- Fault-Recovering Actor G

Fabrizio Montesi
SDU

Dan Plyukhin
SDU

what are actors?

what are actors?

node 1 node 2

what are actors?

node 1 node 2

what are actors?

node 2

what are actors?

node 2

what are actors?

node 1 node 2

what are actors?

node 1 node 2

distribution?

what are actors?

node 1 node 2

distribution?

cleanup?

what are actors?

node 1 node 2

actors are
lightweight
processes

what are actors?

node 1 node 2

actor 1

s actor @ actor 3 actors are
ggg lightweight
ad%é 2 processes

what are actors?

node 1 node 2

actor 1

] e, [—=] actor 3 actors are

ggg lightweight

actor 2 Processes
5

what are actors?

node 1 node 2
actor 1
actor a
%%% "twrite() actor 3 actors are
ggg lightweight
actor 2 processes

o]

what are actors?

node 1 .. msg(a) _ node 2
actor 1 -=""") .
) actor a 4
%%% Write() actor 3 actors are
ggg lightweight
actor 2 processes

o]

what are actors?

node 1 node 2
actor 1
- actor a
%%% Write() actor 3 actors are
E e [8 lightweight
actor 2 processes

o]

what are actors?

node 1 node 2

actor 1

| e — actor 3 messages are
PR & handled

sequentially

actor 2

o]

acror
languages

ERLANG

‘ elixir

acror
languages

) |

ERLANG

‘ elixir

; X

actor
frameworks

Orleans

acror
languages

| o

ERLANG

é elixir

; X

v

actor
frameworks

Orleans

ad-hoc

actors

FOUNDATIONDB

Q
\ aaa

ad-hoc

actors

actor actor
languages frameworks

| \ - Ny,
[i FOUNDATIONDEB
ERLANG

é elixir

made with
actors

Orleans

gl Rabbit 1=

Couchgg

the problem

node 1 node 2 node 3

manager task filesystem

;..\\
(o o MOOM >

= : =
I /.R\ \ A \ / ' |

the problem

node 1 node 2 node 3
manager _.commit? _ task filesystem
A’ Se
4/3\5_\ o oY
= T2
z‘ \ﬁ/ \ [\ / \

the problem

node 2 node 3
. commit? task filesystem

;\
Yo oY '~

A4

the problem

node 2 node 3
- commit? _ task filesystem
’ ~~ N ;\

the problem

node 2 node 3

task filesystem

=l

node 1

the problem

node 2 node 3

filesystem

=l

node 1

manager

~
~
o

the problem

“Tcommi

gl=-==""""

node 2 node 3

filesystem

=l

the problem

node 1 node 2 node 3

filesystem
manager task S2y

examples: see issues #3006, #4099, #5009 in Hadoop MapReduce JIRA

the problem

the problem

clean up your actors!

10

the problem

clean up your actors!

10

the problem

clean up your actors!

...but not too early

10

the problem

clean up your actors!

...but not too early

10

the problem

clean up your actors!
...but not too early

...and not too late

10

the problem

clean up your actors!
...but not too early

...and not too late

10

the problem

clean up your actors!
...but not too early
...and not too late

...and predict all faults ‘&’

10

the problem our mission

clean up your actors!
...but not too early
...and not too late

...and predict all faults ‘&’

10

the problem our mission

clean up your actors! don’t kill live actors

...but not too early
...and not too late

...and predict all faults ‘&’

10

the problem our mission

clean up your actors! don’t kill live actors

...but not too early kill all garbage actors

...and not too late

...and predict all faults ‘&’

10

the problem our mission

clean up your actors! don’t kill live actors
...but not too early kill all garbage actors
...and not too late prove it

...and predict all faults ‘&’

10

the problem

clean up your actors!
...but not too early

...and not too late

f@ @‘i

...and predict all faults ‘&

10

our mission

don’t kill live actors
kill all garbage actors

prove it

vroom vroom geds

at is actor garbage?

whbo

¢ 1°S

-

=

A &

('S

:

1 Y
."'\

N

12

12

actors can...

[] busy actor
—> reference

actors can...

—
g |— ...Sspawn

12

[] busy actor
—> reference

actors can...

sha,
g |— ...spawn

12

[] busy actor
—> reference

actors can...

- -=p message

...Sspawn
...send messages

12

[I busy actor . sayHeIIo(&J)

—p reference

actors can...

- -=p message

...Sspawn
...send messages

...send references

12

[] busy actor . sayHeIIo(&))
—> reference

b\

actors can...

- -=p message

...Sspawn
...send messages
...send references

...forget references

13

busy actor . SayHello(@)

] . D
O idle actor

—

---p

reference

message

|
|
hello!
RY
$
§
D S
D 3
N
N

14

[] busy actor . sayHeIIo(&J)
O idle actor
—_—
---p

reference

message

who is garbage?

|
|
hello!
RY
$
§
D S
D 3
N

14

busy actor . sayHeIIo(&))

] > N
O idle actor
—» reference
=== message Qo Who Is garbage?
oy
5 :
1
hello!
RY
.
.
.
.
~

14

HENOIN

busy actor
idle actor
reference

message

sayHeIIo(&))

14

who is garbage?
T{‘“\

actors are
and capability-secure

[] busy actor . sayHeIIo(@)
O idle actor
—_—
---p

reference

message

|
|
hello!
RY
$
§
D S
D 3
N
N

15

busy actor

[

O idle actor
—

---p

reference

message

|
|
hello!
RY
$
§
D S
D 3
N
§~A

16

busy actor

[

O idle actor
—

---p

reference

message

hello! helloFrom(4))

. ’
S Y
s ¢

.
N J <

16

busy actor

[

O idle actor
—

---p

reference

message

|
|
hello!
RY
$
§
D S
D 3
N

16

busy actor

[

O idle actor
—

---p

reference

message

17

[] busy actor
O idle actor
—» reference
-==p

message

who is garbage?

|
|
hello!
RY
$
§
D S
D 3
N

17

busy actor

[

O idle actor
—

---p

reference

who is garbage?

message

' TTC)k)()(i)/!

17

busy actor

[

O idle actor
—

---p

reference

message

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

18

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

18

who is garbage?

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

18

who is garbage?
everybody!

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

O

O—

19

looks like:

I:I busy actor .
O idle actor IOOkS Ilke:

—p reference

- -=p message
healthy node C
crashed node

mark-and-sweep doesn’t work!

19

20

Q: detecting crashed nodes?

Q: detecting crashed nodes?

Q: detecting crashed nodes?

A: slow nodes are from the cluster!

Challenge 1: Consistency

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

22

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

23

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

23

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

23

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

24

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

24

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

24

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

25

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

)
s

sayHello(¢")

al

25

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

)
s

sayHello(¢")

25

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

\

sayHello(¢")

26

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

\

sayHello(¢")

26

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

\

sayHello(¢")

27

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

\

sayHello(¢")

27

28

problem 1: consistency requires careful timing

28

problem 1: consistency requires careful timing

problem 2: slow nodes block progress

28

problem 1: consistency requires careful timing

problem 2: slow nodes block progress

big idea #1

design actor’s local state so that

"looking consistent” implies “being consistent”’
P

28

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

29

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

29

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

29

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

29

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

s
$

sayHello(¢")

30

| OO

busy actor
idle actor
reference
message
healthy node

crashed node

s
$

sayHello(¢")

30

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

s
$

sayHello(¢")

31

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

sayHello(¢")

31

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

32

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

32

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

33

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

33

Challenge 2: Crashes

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

node 3

35

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

node 3

36

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

37

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

37

how many messages sent?

| OO

busy actor
idle actor
reference
message
healthy node

crashed node

37

how many messages sent?

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

37

how many messages sent?

did the reference leak?

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

37

how many messages sent?

did the reference leak?

problem: how do we recover the data?

38

problem: how do we recover the data?

big idea #2

don’t ask the crashed node—ask its neighbors!

38

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

39

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

39

one msg

.

to ¢

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

39

one msg

.

to ¢

NO News

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

node 3

ref ¢ for L)

39

one msg

.

to ¢

NO News

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

one msg

.

to ¢

=* NO Nnews

node 3

-
-
m -

ref ¢ for L)

ref { for ¢® ===~

39

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

40

HENOIN

busy actor
idle actor
reference
message
healthy node

crashed node

40

Implementation

1) actors send updates to GC
whenever they want

1) actors send updates to GC
whenever they want

/Q\ /‘b\ 2) GC merges updates into a
@__ ’@ @ ‘ shadow graph
SN
@F@ OO

real world shadow world

1) actors send updates to GC
whenever they want

2) GC merges updates into a
shadow graph

3) GC traces its graph to find
garbage

real world shadow world

43

node 1 node 2 node 3 4) local GCs broadcast updates to

remote GCs

43

node 1 node 2 node 3 4) local GCs broadcast updates to

remote GCs

5) remote GCs build »undo logs

43

node 1 node 2 node 3 4) local GCs broadcast updates to

o - » £

[

remote GCs

5) remote GCs build

s Lo Sl ouayy o

AR
e g s PN
Aobe

o i omgy ot Z e s

,.;“{-./,.i{,\\ : H’

5 \

A

I 2 I

udopangap <. oS

Ak Al

le onss. il wff

4 0 794 0
- g -

RIAL | 2
oy
2 0
wf/
N g

femp AL I 3 RS I
ZS bopor
Ak Al
wff wf/
2 0 powi 0

6) if node X fails, merge the
undo log into the shadow graph

43

CDF

acyclic garbage collection speed

1.0
— CRGC
WRC
N
0.5 - ° 6t
0.0 = | | | I |
0 250 500 750 1000 1250

Actor life time (ms)

1500

44

acyclic garbage collection speed average slowdown (%)

AN
1.0 .'SQ \92:"

—— CRGC = R

WRC & & S

é 05 - No GC Benchmark 20 = 8:
apsp +5 -1 3

astar +27 -12 -5

0.0 4= | | | | | bitonicsort +5 39 4
0 250 500 750 1000 1250 1500 facloc +2 4 51
Actor life time (ms) é nqueenk +1 5 5

Ej pilprecision +2 0 0

‘s quicksort +1 0 -1

£ radixsort +8 1 2

recmatmul +1 0 0

sieve +2 0 1

trapezoid +1 0 0
uct +7 25 22

—
@)

geomean

44

we need your help!

we need your help!

traditional GC tricks

we need your help!

traditional GC tricks

detecting shared
references

we need your help!

traditional GC tricks bug study

detecting shared
references

we need your help!

traditional GC tricks bug study
detecting shared porting to BEAM

references

we nheed your help!

traditional GC tricks bug study
porting to BEAM

detecting shared
references

scaling to large clusters

*on the job market!

