
Relax! The Semilenient Core of Choreographic Programming
(Extended Version)
DAN PLYUKHIN, University of Southern Denmark, Denmark

XUEYING QIN, University of Southern Denmark, Denmark

FABRIZIO MONTESI, University of Southern Denmark, Denmark

The past few years have seen a surge of interest in choreographic programming, a programming paradigm for

concurrent and distributed systems. The paradigm allows programmers to implement a distributed interaction

protocol with a single high-level program, called a choreography, and then mechanically project it into correct

implementations of its participating processes. A choreography can be expressed as a 𝜆-term parameterized

by constructors for creating data “at” a process and for communicating data between processes. Through

this lens, recent work has shown how one can add choreographies to mainstream languages like Java, or

even embed choreographies as a DSL in languages like Haskell and Rust. These new choreographic languages

allow programmers to write in applicative style (like in functional programming) and write higher-order

choreographies for better modularity. But the semantics of functional choreographic languages is not well-

understood. Whereas typical 𝜆-calculi can have their operational semantics defined with just a few rules,

existing models for choreographic 𝜆-calculi have dozens of complex rules and no clear or agreed-upon evaluation
strategy.

We show that functional choreographic programming is simple. Beginning with the Chor𝜆 model from

previous work, we strip away inessential features to produce a “core” model called 𝜆𝜒 . We discover that

underneath Chor𝜆’s apparently ad-hoc semantics lies a close connection to non-strict 𝜆-calculi; we call the

resulting evaluation strategy semilenient. Then, inspired by previous non-strict calculi, we develop a notion of

choreographic evaluation contexts and a special commute rule to simplify and explain the unusual semantics of

functional choreographic languages. The extra structure leads us to a presentation of 𝜆𝜒 with just ten rules, and

a discovery of three missing rules in previous presentations of Chor𝜆. We also show how the extra structure

comes with nice properties, which we use to simplify the correspondence proof between choreographies and

their projections. Our model serves as both a principled foundation for functional choreographic languages

and a good entry point for newcomers.

CCS Concepts: • Theory of computation→ Lambda calculus; Distributed computing models; • Com-
puting methodologies→ Distributed programming languages.

Additional Key Words and Phrases: Choreographies, Concurrency, 𝜆-calculus

ACM Reference Format:
Dan Plyukhin, Xueying Qin, and Fabrizio Montesi. 2025. Relax! The Semilenient Core of Choreographic

Programming (Extended Version). Proc. ACM Program. Lang. 9, ICFP, Article 269 (August 2025), 45 pages.

https://doi.org/10.1145/3747538

1 Introduction
Choreographic programming [Montesi 2013] is a paradigm for writing concurrent code. Pro-

grammers can write a single program, called a choreography, and project it (i.e., compile it) to

Authors’ Contact Information: Dan Plyukhin, University of Southern Denmark, Denmark, dplyukhin@imada.sdu.dk;

Xueying Qin, University of Southern Denmark, Denmark, xyqin@imada.sdu.dk; Fabrizio Montesi, University of Southern

Denmark, Denmark, fmontesi@imada.sdu.dk.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/8-ART269

https://doi.org/10.1145/3747538

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

https://orcid.org/0009-0004-8712-7895
https://orcid.org/0000-0003-4825-2023
https://orcid.org/0000-0003-4666-901X
https://doi.org/10.1145/3747538
https://orcid.org/0009-0004-8712-7895
https://orcid.org/0000-0003-4825-2023
https://orcid.org/0000-0003-4666-901X
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3747538

269:2 Dan Plyukhin, Xueying Qin, and Fabrizio Montesi

generate correct implementations of each process in the application. An oft-repeated slogan is

“deadlock-freedom by design”, which means that processes projected from a choreography do

not deadlock [Carbone and Montesi 2013]. This property is no accident: in fact, proof normalisa-

tion in linear logic corresponds to a first-order choreographic programming language [Carbone

et al. 2018]. Choreographies also have many other practical benefits: in just the past four years,

choreographies have been used to reduce proof burden for Hoare-style verification of concurrent

systems [Cruz-Filipe et al. 2023a; van den Bos and Jongmans 2023], as an intermediate representa-

tion for distributed cryptography [Acay et al. 2021], and as a tool for implementing distributed

applications [Lugovic and Montesi 2024]. For a comprehensive overview, we refer the reader to

Montesi’s textbook [Montesi 2023].

A recent flurry of activity can be traced to 2020, when the first choreographic programming

language for realistic software development appeared: Choral [Giallorenzo et al. 2020, 2024] showed
how a mainstream language like Java can be made “choreographic” by adding datatypes for located

values 𝑇@p, and by adding functions of type 𝑇@p → 𝑇@q to denote communication from

process p to process q. Extending this idea, it was found that (at the cost of some expressive

power) choreographic programming can be implemented as a library in sufficiently expressive

languages [Shen et al. 2023]. These discoveries led to an explosion of choreographic programming

in languages like Haskell [Bates et al. 2025; Shen et al. 2023], Rust [Bates et al. 2025; Laddad et al.

2024], Clojure [klo 2025], and Elixir [cho 2025]. Choral in particular has been used to develop

practical applications like IRC [Lugovic and Montesi 2024] and model-serving pipelines [Plyukhin

et al. 2024] with similar performance to hand-written processes and deadlock-freedom by design.

Many new choreographic languages are higher-order, meaning programmers can write chore-

ographies that take other choreographies as parameters. Higher-order choreographies are useful

for writing modular systems: for example, one can implement a replicated key-value store as

a choreography and parameterize it by another choreography that implements the replication

protocol [Shen et al. 2023]. Higher-order choreographic programming was first presented in Choral,

and subsequently came attempts to formalize its semantics [Cruz-Filipe et al. 2022; Cruz-Filipe

et al. 2023; Graversen et al. 2024; Hirsch and Garg 2022]. These formalizations all build on the

𝜆-calculus, but unfortunately they lack its elegant simplicity. For instance, a semantics for Plotkin’s

call-by-value 𝜆-calculus can be given with just one axiom [Plotkin 1975], and the call-by-need

𝜆-calculus only needs three [Ariola et al. 1995]. In contrast, choreographic 𝜆-calculi currently use

more than 20, sometimes almost 40, rules [Cruz-Filipe et al. 2022; Cruz-Filipe et al. 2023; Hirsch

and Garg 2022].

Part of the complexity in past models stems from ambition. For instance, Chor𝜆 [Cruz-Filipe

et al. 2022] includes constructors for algebraic datatypes, so it is not truly a “core” model. But more

fundamentally, researchers have not settled on an evaluation strategy! Consider the two current

foundational models:

• Pirouette [Hirsch and Garg 2022] is call-by-value, but this requires global synchronization—

even for non-involved participants—on every choreography call. This is inconsistent with

Pirouette’s intraprocedural semantics, which has more concurrency than call-by-value. Thus

Pirouette lacks a reasonable version of the (𝛽) axiom, which states that any expression can

be factored out into a separate definition (or, dually, inlined) without changing the program’s

semantics [Barendregt 1984].

• Chor𝜆 [Cruz-Filipe et al. 2022] is a more faithful model of higher-order choreographic

languages, but its evaluation strategy is mysterious—in fact we shall see it is neither strict nor

lazy. The model also crucially depends on ad-hoc “restructuring” rules, and its correctness

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

Relax! The Semilenient Core of Choreographic Programming (Extended Version) 269:3

proof is quite intimidating. More recent models avoid these restructuring rules by ignoring

recursion [Bates et al. 2025] or relying on extra synchronization [Graversen et al. 2024].

Our goal is to show that Chor𝜆’s approach is the right way to go, and that its unusual semantics

is not a wart—it is a beauty mark. We make our case by developing a new presentation of the

core of Chor𝜆 and showing that it has a clear evaluation strategy combining features from strict

(call-by-value) and non-strict (lenient, or call-by-future [Arvind et al. 1986]) calculi. This connection

to non-strict calculi is particularly surprising because our semantics “emerges from” the semantics

of the network, which is call-by-value. Because of its close connection to lenient calculi, we call

our evaluation strategy semilenient.
The remainder of the paper presents 𝜆𝜒 , a model that reveals the elegant functional core at the

heart of choreographic programming. Our key contributions are:

• A streamlined model. The operational semantics of 𝜆𝜒 has just ten rules. We accomplish this

by cutting away inessential features (like Chor𝜆’s data structures and Pirouette’s multiple

abstractions) and by introducing choreographic evaluation contexts to capture the semilenient

evaluation strategy. These evaluation contexts are governed by simple laws, which researchers

can use as a recipe to find the right semantics in their ownmodels.We use the extra structure to

define a simple commute rule, which summarizes what would otherwise be eight seemingly ad-

hoc rules. Using the new rule, we discover three missing rules in Chor𝜆’s published semantics

that are necessary for choreographies to match the behavior of their projections.

• A simplified correspondence proof. The hallmark result of choreographic programming lan-

guages is a Projection Theorem, which explains how choreographies and networks correspond.

With prior approaches, this result could only be proved by a large and difficult argument by

structural induction. Doing so does not give much intuition about how choreographies relate

to their projection, and it is easy to make mistakes—leading to incorrect definitions. Here we

find that evaluation contexts can shed some light: it turns out that evaluation contexts in the

choreography are projected into evaluation contexts at the network. We use this result, along

with some other informative lemmas, to give a nice visual proof of the Projection Theorem

by commuting diagrams.

• A stronger correspondence result. Chor𝜆 has conspicuous features at the network level that are

not present in ordinary process languages. When compiling to a conventional call-by-value

language that lacks these features, it is unclear if important results like deadlock-freedom will

actually hold. We fill in the missing piece with a novel prophecy relation that lets networks

predict the future, and a Prophecy Theorem that shows networks with prophecy are no more

powerful than regular networks. By working modulo prophecy, our Projection Theorem

establishes a weak bisimulation between choreographies and plain old call-by-value networks.

Our model shows higher-order choreographic programming has a simple and elegant foundation

in the 𝜆-calculus. We believe these developments will serve as a good introduction for researchers

to the beauty of choreographic programming, and as a practical jumping-off point for future work.

We will proceed in three easy pieces. Section 2 introduces the network language—our compilation

target—and explains the need for choreographies. Section 3 presents 𝜆𝜒 and its connections to

other 𝜆-calculi. Section 4 defines the projection from 𝜆𝜒 to the network level and a new technique

for proving its correctness. We wrap up with related work in Section 5 and conclusions in Section 6.

In some cases, proofs have been omitted for space; they can be found in Appendix A.

2 Networks
Figure 1 presents our network language. We assume an unbounded set of variables 𝑥,𝑦, 𝑧, . . . , of
procedure names 𝑓 , 𝑔, ℎ, . . . , of labels 𝑙1, 𝑙2, . . . , and process names p, q, r, A value 𝐿 may be a

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

269:4 Dan Plyukhin, Xueying Qin, and Fabrizio Montesi

Terms:

𝑃,𝑄, 𝑅 F 𝐿 | 𝑃 𝑃 | if 𝑃 then 𝑃 else 𝑃 | ⊕p 𝑙 𝑃 | &p{𝑙1 : 𝑃1, . . . , 𝑙𝑛 : 𝑃𝑛} | 𝑓 (p)
𝐿 F 𝑥 | 𝜆𝑥 : 𝑆. 𝑃 | sendp | recvq | 𝑐 | ⊥
𝑆 F 𝑆 → 𝑆 | 𝛼 | ⊥
PF {𝑓𝑖 (p) : 𝑆𝑖 = 𝑃𝑖 }𝑖∈I
N F p

[
𝑃
]
| (N | N)

Frames:

F F • 𝑃 | 𝐿 • | if • then 𝑃 else 𝑃

Evaluation contexts:

E F • | F [E]

Notions of reduction:

sendp 𝑐
sendp 𝑐
↦−−−−−−→ ⊥ (send)

recvp ⊥
recvp 𝑐
↦−−−−−−→ 𝑐 (receive)

⊕p 𝑙 𝑃
⊕p 𝑙

↦−−−−−−→ 𝑃 (choice)

&p{𝑙1 : 𝑃1, . . . , 𝑙𝑛 : 𝑃𝑛}
&p 𝑙𝑖

↦−−−−−−→ 𝑃𝑖 (offer)

(𝜆𝑥 : 𝑇 . 𝑃) 𝐿 ↦−−−−−−→ 𝑃 [𝑥 := 𝐿] (p-app)

if 𝑐 then 𝑃true else 𝑃false ↦−−−−−−→ 𝑃𝑐 (p-if)

𝑓 (p) ↦−−−−−−→ 𝑃 [q := p] (p-def)

where (𝑓 (q) : 𝑆 = 𝑃) ∈ P
⊥ ⊥ ↦−−−−−−→ ⊥ (bottom)

Evaluation strategy:

𝑃 ↦→ 𝑃 ′

p
[
E[𝑃]

]
| N 𝜏−→ p

[
E[𝑃 ′]

]
| N

[p-tau]

𝑃1
sendq 𝑐
↦−−−−−−→ 𝑃 ′

1
𝑃2

recvp 𝑐
↦−−−−−−→ 𝑃 ′

2

p
[
E1 [𝑃1]

]
| q

[
E2 [𝑃2]

]
| N

comp,q
−−−−−→ p

[
E1 [𝑃 ′

1
]
]
| q

[
E2 [𝑃 ′

2
]
]
| N

[p-com]

𝑃1
⊕p 𝑙
↦−−−→ 𝑃 ′

1
𝑃2

&q 𝑙𝑖
↦−−−−→ 𝑃 ′

2

p
[
E1 [𝑃1]

]
| q

[
E2 [𝑃2]

]
| N

selectp,q 𝑙
−−−−−−−−→ p

[
E1 [𝑃 ′

1
]
]
| q

[
E2 [𝑃 ′

2
]
]
| N

[p-select]

Fig. 1. Syntax and semantics for networks

variable 𝑥 , an abstraction 𝜆𝑥 : 𝑆. 𝑃 , a communication primitive sendp or recvp, or a constant 𝑐 . We

assume the language includes constants true and false with the usual meaning, and a distinguished

constant ⊥ that indicates “nothing left to do”. Note that process names and procedure names are

not values; our choreography model will require a strict separation between processes and ordinary

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

Relax! The Semilenient Core of Choreographic Programming (Extended Version) 269:5

p ∈ Θ Θ; Γ ⊢ 𝑃 : 𝑆

Θ; Γ ⊢ ⊕p 𝑙 𝑃 : 𝑆
[NTCho]

p ∈ Θ Θ; Γ ⊢ 𝑃𝑖 : 𝑆 for 1 ≤ 𝑖 ≤ 𝑛

Θ; Γ ⊢ &p{𝑙1 : 𝑃1, . . . , 𝑙𝑛 : 𝑃𝑛} : 𝑆
[NTOff]

p ∈ Θ

Θ; Γ ⊢ sendp : 𝑆 → ⊥ [NTSend]

p ∈ Θ

Θ; Γ ⊢ recvp : ⊥ → 𝑆
[NTRecv]

Γ, 𝑥 : 𝑆 ⊢ 𝑃 : 𝑆 ′

Θ; Γ ⊢ 𝜆𝑥 : 𝑆. 𝑃 : 𝑆 → 𝑆 ′
[NTAbs]

𝑥 : 𝑆 ∈ Γ
Θ; Γ ⊢ 𝑥 : 𝑆

[NTVar]

Θ; Γ ⊢ 𝑃1 : 𝑆 → 𝑆 ′ Θ; Γ ⊢ 𝑃2 : 𝑆
Θ; Γ ⊢ 𝑃1 𝑃2 : 𝑆 ′

[NTApp]

Θ; Γ ⊢ 𝑃 : Bool Θ; Γ ⊢ 𝑃1 : 𝑆 Θ; Γ ⊢ 𝑃2 : 𝑆
Θ; Γ ⊢ if 𝑃 then 𝑃1 else 𝑃2 : 𝑆

[NTIf]

type(𝑐) = 𝛼

Θ; Γ ⊢ 𝑐 : 𝛼 [NTConst]

(𝑓 (q) : 𝑆 = 𝑃) ∈ P |p| = |q| distinct(p) p ⊆ Θ

Θ; Γ ⊢ 𝑓 (p) : 𝑆
[NTDef]

Fig. 2. Typing rules for processes.

data, and combining the two requires process polymorphism [Graversen et al. 2024] which is

beyond the scope of our work.

A process 𝑃 is composed of familiar constructs like values 𝐿, applications 𝑃1 𝑃2, and if-expressions
if 𝑃 ′ then 𝑃1 else 𝑃2. We also include primitives for distributed choice, drawn from concurrency

theory: &p{𝑙1 : 𝑃1, . . . , 𝑙𝑛 : 𝑃𝑛} and ⊕p 𝑙 𝑃 , explained below. A network N is a fixed set of processes

p1
[
𝑃1
]
| . . . | pn

[
𝑃𝑛

]
, where the process names p1, . . . , p𝑛 are distinct and the processes 𝑃1, . . . , 𝑃𝑛

are closed, i.e., they have no free variables.

To write non-terminating programs, the semantics is parameterized by a set of recursive proce-

dure definitions P = {𝑓𝑖 (p) : 𝑆𝑖 = 𝑃𝑖 }𝑖∈I . Each procedure 𝑓𝑖 in P is parameterized by a list of process

names p. When (𝑓 (p) : 𝑆 = 𝑃) ∈ P and some process makes a procedure call 𝑓 (q), the process
names q are substituted for p in the procedure body 𝑃 . Thus procedures can be applied to process

names and abstractions can be applied to values, but not vice versa.

For the static semantics of processes, we assume a set of base types 𝛼 ∈ {Bool,⊥, . . . } and a

function ‘type(−)’ mapping constants to their types. Typing judgments for processes have the

form Θ; Γ ⊢P 𝑃 : 𝑆 , where Θ is a set of process names in scope, Γ is a typing context mapping

from variables to types, P is a set of procedure definitions, 𝑃 is a process, and 𝑆 is its type; for

readability, we often leave P implicit and instead write Θ; Γ ⊢ 𝑃 : 𝑆 . A set of procedure definitions

P is well-typed if, for each definition 𝑓 (p) : 𝑆 = 𝑃 in P, we have p; Γ ⊢ 𝑃 : 𝑆 . The full set of typing

rules for processes appears in Figure 2.

A process can send q a value 𝐿 by applying sendq to 𝐿; likewise, it can wait for a message from p
with the application recvp ⊥. A process can signal a control flow decision to q with the expression

⊕q 𝑙 𝑃 , which means “send label 𝑙 to q and continue as 𝑃”; conversely, it can wait for a decision

from p with the expression &p{𝑙1 : 𝑄1, . . . , 𝑙𝑛 : 𝑄𝑛}, which means “upon receiving label 𝑙𝑖 from p,
continue as 𝑄𝑖”. Strictly speaking, distributed choice can be implemented with ordinary sendq and
recvp—but it is common practice to make the two primitives distinct in process calculi based on

linear logic and session types. We include choice primitives to retain coherence with that work.

We give the network language a standard call-by-value semantics using evaluation contexts,

with a small creative choice in how we present the latter. Usually, evaluation contexts are defined

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

269:6 Dan Plyukhin, Xueying Qin, and Fabrizio Montesi

auth


let 𝑥 = recvc in
if valid 𝑥
then ⊕w𝑠 ok

else ⊕w𝑠 ko

 c


sendauth creds ;
let result = recvws ⊥ in
print result

 ws


&auth{
ok : sendc newToken()
ko : sendc noToken

}


Fig. 3. A simple distributed authentication protocol based on OpenID [Montesi 2023]. The example uses
let-sugar, i.e. let 𝑥 = 𝑃1 in 𝑃2 ≡ (𝜆𝑥 . 𝑃2) 𝑃1, and (;)-sugar, i.e. 𝑃1; 𝑃2 ≡ (𝜆𝑥. 𝑃2) 𝑃1 where 𝑥 is fresh. We will
use this convention in the network language throughout the paper.

1 let 𝑥 = comc,auth creds@c in
2 let result =
3 if valid@auth 𝑥 then
4 selectauth,ws ok
5 newToken(ws)
6 else
7 selectauth,ws ko
8 noToken@ws
9 in print@c (comws,c result)

Fig. 4. A choreographic implementation of the distributed authentication protocol. Projecting this choreogra-
phy generates a network equivalent to the one in Figure 3.

by direct induction like so:

E′ F E′ 𝑃 | 𝐿 E′ | if E′ then 𝑃 else 𝑃 | •

Instead we have defined evaluation contexts as a stack of frames F , so any evaluation context E
can be written as F 1 [F 2 [. . .]]. This presentation—which we borrowed from System 𝐹 𝐽 [Maurer

et al. 2017], but dates back at least to Huet’s zippers [Huet 1997]—will become useful in Section 3

when we introduce choreographic evaluation contexts as stacks of both choreographic frames and
so-called answering contexts. By routine induction, the definitions of E and E′

are equivalent.

2.1 Motivating Choreographies
Figure 3 implements a simple authentication protocol in the network language, with types omitted

for readability. Before reading our explanation below, we encourage the reader to stop and think

about what will happen when Figure 3 is executed. Can the network reach a deadlock, i.e., a state

where some processes are not values and yet the network has no next step?

Many programmers will intuitively reason about networks by sketching a sequence diagram [Ob-

ject Management Group 2017] or using Alice-and-Bob notation [Needham and Schroeder 1978].

Others might construct a multiparty session type [Honda et al. 2016] and verify the network

conforms to the type. But diagrams and session types both involve supplementing an existing

network with extra information to specify its emergent behavior and verifying that the network

actually respects the specification.

Choreographic programming is a more direct approach that aims to turn Alice-and-Bob notation

into a bona fide programming language. This allows us to write concurrent programs at a higher

level of abstraction and generate processes that implement the desired protocol. Figure 4 shows an

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

Relax! The Semilenient Core of Choreographic Programming (Extended Version) 269:7

implementation of the authentication protocol as a 𝜆𝜒 choreography, with types omitted; we will

not formalize its syntax and semantics until Section 3, so observe just the broad features for now.

Notice the choreography looks like an ordinary functional program, but with three new attributes:

(1) a syntax for tagging constants with locations, e.g. creds@c represents the creds constant at
process c; (2) a primitive comp,q for communicating a value from p to q; and (3) a primitive selectp,q 𝑙
so p can inform q about a control flow decision. Readers who drew a sequence diagram for Figure 3

can check that Figure 4 likely resembles their informal specification.

2.2 Authentication Explained
Reading the choreography in Figure 4, the protocol begins with an expression comc,auth creds@c
that communicates the value creds from c to auth. This single expression corresponds to the terms

sendauth creds and recvc ⊥ in Figure 3. Next, auth checks if the credentials are valid and sends a

signal to ws—either selectauth,ws ok or selectauth,ws ko. These expressions correspond to the choice

auth makes—either ⊕𝑤𝑠 ok or ⊕𝑤𝑠 ko—and the offer &auth{. . . } made by ws in Figure 3. Finally,

the result is sent to c and printed. Figure 4 can be projected to produce a network very much like

Figure 3, with minor differences that will be evident in Section 4. By construction, the projected

network is both type-safe and deadlock-free [Cruz-Filipe et al. 2023].

Readers familiar with choreographic programming will notice Figure 4 is written in applicative

style, like a conventional functional language. The if-expression on lines 3–8 returns a value that we

can bind to the variable result, and line 9 applies print@c directly to the expression comws,c result
without giving a name to the intermediate result. Applicative features were not available to

programmers until the Choral [Giallorenzo et al. 2024] language was released, and most formal

models still only allow a first-order imperative programming style [Montesi 2023; Plyukhin et al.

2024]. In the next section, we explore why functional choreographic programming is so elusive.

3 Choreographies
Let us now introduce our choreography model 𝜆𝜒 properly. A (choreographic) value 𝑉 may be a

variable 𝑥 , an abstraction 𝜆𝑥 : 𝑇 . 𝑀 , a communication primitive comp,q, or a constant 𝑐@p located at
process p. A choreography 𝑀 may be an application𝑀1 𝑀2, an if-expression if 𝑀 ′ then 𝑀1 else 𝑀2,

a selection selectp,q 𝑙 𝑀 ′
, a choreographic procedure call 𝑓 (p), or a value 𝑉 . Choreographies also

have let-expressions let 𝑥 = 𝑀 in 𝑀 ′
, which (unlike in the network language) are not just sugar—

we shall see why this is useful below. Aside from let-expressions, the syntax of 𝜆𝜒 is essentially the

same as our network model, except the communication primitives sendq, recvp have been unified

by comp,q and the choice primitives ⊕q ,&p have been unified by selectp,q . We also assume if-
expressions and choreographic procedure calls are either let-bound or in tail position; for example,

𝑓 (p) 𝑀 must be expanded as let 𝑥 = 𝑓 (p) in 𝑀 . The syntax is summarized in Figure 5.

Choreographic types 𝑇 are also similar to network-level types. Base types 𝛼@p are now tagged

with their location, and function types 𝑇 →p 𝑇
′
are tagged with a list of processes p called proxy

processes; our type system will ensure that if a process p is involved in computing the function’s

result, then p will occur in 𝑇 , 𝑇 ′
, or p. If the function type has no proxy processes, we will write it

as 𝑇 → 𝑇 ′
. The set of processes that occur in a term is formalized by the function ‘pn(−)’, defined

at the bottom of Figure 5.

Typing judgments for choreographies, written Θ; Γ ⊢D 𝑀 : 𝑇 , are analogous to typing judgments

for processes: Θ is a set of process names in scope, Γ is a mapping from variables to choreographic

types, D is a set of choreographic procedure definitions, 𝑀 is a choreography, and 𝑇 is a chore-

ographic type; for readability we usually leave D implicit. The 𝜆𝜒 typing rules are defined in

Figure 6 and are very similar to the network-level typing rules. Notice how the network-level

rules [NTSend], [NTRecv] have been unified by the choreographic rule [TCom]—likewise for

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

269:8 Dan Plyukhin, Xueying Qin, and Fabrizio Montesi

Terms:

𝑀 F 𝑉 | 𝑀 𝑀 | let 𝑥 : 𝑇 = 𝑀 in 𝑀 | if 𝑀 then 𝑀 else 𝑀 | selectp,p 𝑙 𝑀 | 𝑓 (p)
𝑉 F 𝑥 | 𝜆𝑥 : 𝑇 .𝑀 | comp,p | 𝑐@p

𝑇 F 𝑇 →p 𝑇 | 𝛼@p

DF {𝑓𝑖 (p) : 𝑇𝑖 = 𝑀𝑖 }𝑖∈I
Frames:

F F •𝑀 | 𝑉 • | if • then 𝑀 else 𝑀 | let 𝑥 : 𝑇 = • in 𝑀

Answering contexts:

A F let 𝑥 : 𝑇 = 𝑀 in • | selectq,r 𝑙 •
Evaluation contexts:

Ep F • | F
[
Ep

]
| A

[
Ep

]
where p # pn(A)

Notions of reduction:

comp,q 𝑐@p
comp,q

↦−−−−−−−−→ 𝑐@q (com)

selectp,q 𝑙 𝑀
selectp,q 𝑙
↦−−−−−−−−→ 𝑀 (select)

(𝜆𝑥 : 𝑇 .𝑀) 𝑀′ p
↦−−−−−−−−→ let 𝑥 : 𝑇 = 𝑀′ in 𝑀 (app)

let 𝑥 : 𝑇 = 𝑉 in 𝑀
p

↦−−−−−−−−→ 𝑀 [𝑥 := 𝑉] (let)

where p = pn(𝑉)

if 𝑐@p then 𝑀true else 𝑀false
p

↦−−−−−−−−→ 𝑀𝑐 (if)

𝑓 (p)
p

↦−−−−−−−−→ 𝑀 [q := p] (def)

where (𝑓 (q) : 𝑇 = 𝑀) ∈ D

F
[
A[𝑀]

] p
↦−−−−−−−−→ A

[
F [𝑀]

]
(commute)

Evaluation strategy:

𝑀
p
↦−→ 𝑀′ p ∈ p

Ep [𝑀] 𝜏−→ Ep [𝑀′]
[c-tau]

𝑀
comp,q
↦−−−−−→ 𝑀′

Ep,q [𝑀]
comp,q
−−−−−→ Ep,q [𝑀′]

[c-com]

𝑀
selectp,q 𝑙
↦−−−−−−−−→ 𝑀′

Ep,q [𝑀]
selectp,q 𝑙
−−−−−−−−→ Ep,q [𝑀′]

[c-select]

Mentioned processes:

pn(𝑀1 𝑀2) = pn(𝑀1) ∪ pn(𝑀2)
pn(if 𝑀 then 𝑀1 else 𝑀2) =

pn(𝑀) ∪ pn(𝑀1) ∪ pn(𝑀2)
pn(𝜆𝑥 : 𝑇 .𝑀) = pn(𝑇) ∪ pn(𝑀)
pn(comp,q) = {p, q}
pn(•) = ∅

pn(selectp,q 𝑙 𝑀) = {p, q} ∪ pn(𝑀)
pn(let 𝑥 : 𝑇 = 𝑀 in 𝑀′) =

pn(𝑇) ∪ pn(𝑀) ∪ pn(𝑀′)
pn(𝑥) = pn(type(𝑥))
pn(𝑐@p) = pn(𝑇@p) = p

pn(𝑇1 →p 𝑇2) = pn(𝑇1) ∪ pn(𝑇2) ∪ p

Fig. 5. Syntax and semantics for 𝜆𝜒

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

Relax! The Semilenient Core of Choreographic Programming (Extended Version) 269:9

Θ′
; Γ, 𝑥 : 𝑇 ⊢ 𝑀 : 𝑇 ′

pn(𝑇 →p 𝑇
′) = Θ′ ⊆ Θ

Θ; Γ ⊢ 𝜆𝑥 : 𝑇 .𝑀 : 𝑇 →p 𝑇
′ [TAbs]

𝑥 : 𝑇 ∈ Γ pn(𝑇) ⊆ Θ

Θ; Γ ⊢ 𝑥 : 𝑇
[TVar]

Θ; Γ ⊢ 𝑀1 : 𝑇 →p 𝑇
′ Θ; Γ ⊢ 𝑀2 : 𝑇

Θ; Γ ⊢ 𝑀1 𝑀2 : 𝑇
′ [TApp]

Γ ⊢ 𝑀 : Bool@p Θ; Γ ⊢ 𝑀1 : 𝑇 Θ; Γ ⊢ 𝑀2 : 𝑇 p ∈ Θ

Θ; Γ ⊢ if 𝑀 then 𝑀1 else 𝑀2 : 𝑇
[TIf]

Θ; Γ ⊢ 𝑀 : 𝑇 p, q ∈ Θ

Θ; Γ ⊢ selectp,q 𝑙 𝑀 : 𝑇
[TSel]

p ∈ Θ type(𝑐) = 𝛼

Θ; Γ ⊢ 𝑐@p : 𝛼@p
[TConst]

p, q ∈ Θ

Θ; Γ ⊢ comp,q : 𝛼@p →∅ 𝛼@q
[TCom]

(𝑓 (q) : 𝑇 = 𝑀) ∈ D |p| = |q| distinct(p)
Θ; Γ ⊢ 𝑓 (p) : 𝑇 [q := p]

[TDef]

Θ; Γ ⊢ 𝑀1 : 𝑇1 Θ; Γ, 𝑥 : 𝑇1 ⊢ 𝑀2 : 𝑇2

Θ; Γ ⊢ let 𝑥 : 𝑇1 = 𝑀1 in 𝑀2 : 𝑇2
[TLet]

Fig. 6. Full set of typing rules for 𝜆𝜒 .

[NTCho], [NTOff] and [TSel]. A set of choreographic procedure definitions D is well-typed if, for

each definition 𝑓 (p) : 𝑇 = 𝑀 in D, we have p; Γ ⊢D 𝑀 : 𝑇 .

The key novelty of 𝜆𝜒 is how we present its dynamic semantics. But before diving into the details,

let us discuss evaluation strategies.

3.1 Evaluation Strategies
The dynamic semantics of a 𝜆-calculus can be presented in two parts. The first part is a notion
of reduction 𝑀

𝜇↦−−→ 𝑀 ′
, which defines atomic computational steps such as 𝛽-reduction; we say

𝑀 is a redex, 𝑀 ′
is its contractum, and 𝜇 is an optional transition label. The second part is an

evaluation strategy 𝑀
𝜇−→ 𝑀 ′

, which defines the order redexes should be reduced [Barendregt 1984].

Two well-known evaluation strategies are call-by-value (“strict”, like our network language) and

call-by-need (“lazy”, elegantly presented in the call-by-need calculus [Ariola et al. 1995]). These

two evaluation strategies are deterministic: for any process 𝑃 in our network language there is

at most one 𝑃 ′
such that 𝑃

𝜇↦−→ 𝑃 ′
. (However, a network N may have more than one N ′

such that

N 𝜇−→ N′
, because processes execute concurrently.)

Choreographic programming languages have nondeterministic evaluation strategies. To moti-

vate this, consider the first-order choreography in Figure 7. It defines a choreographic procedure

loop(p, q) which passes the integer 1 between p and q ad infinitum. Processes r1 and r2 enter this
procedure on line 4, and r3 sends the integer 2 to r4 on line 5. A typical projection for this choreogra-

phy is shown on the right; notice that the loop procedure was projected into two implementations,

one for each of its role parameters.

We expect choreographic programs to have the same behavior as their projection. Inspecting

the projected network, we see that the execution of r1, r2 and r3, r4 can be arbitrarily interleaved.

This implies that a usual sequential semantics is inadequate for the choreography in Figure 7: it

must be possible for the procedure call on line 4 to execute out of order with the communication on

line 5, because the instructions involve different processes. This semantics, where the semicolon

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

269:10 Dan Plyukhin, Xueying Qin, and Fabrizio Montesi

1 loop(p, q) =𝑑𝑒𝑓
2 comp,q 1@p;

3 loop(q, p)
4 loop(r1, r2);
5 comr3,r4 2

loopp (q) =𝑑𝑒𝑓
sendq 1;

loopq (q)

loopq (p) =𝑑𝑒𝑓
recvp ⊥;
loopp (p)

r1
[
loopp (r2)

]
| r2

[
loopq (r1)

]
| r3

[
sendr4 1

]
| r4

[
recvr3 ⊥

]
Fig. 7. A choreography with a loop (left) and a typical projection (right).

operator is not quite sequential and not quite parallel, is the de facto standard in modern choreog-

raphy languages and textbooks [Montesi 2023] and is crucial for the linear logic interpretation of

choreographies [Carbone et al. 2018].

3.2 Lenient Semantics
When adapting a first-order language to the higher-order setting, we expect certain equivalences

to be obeyed. Functional languages often use let-sugar and (;)-sugar, as seen in Figure 3. These

desugarings give us a hint about what the meaning of an application (𝜆𝑥 : 𝑇 . 𝑀) 𝑀 ′
should be.

Specifically, we expect these three choreographies to have identical semantics:

(𝜆𝑥 . comr3,r4 2) loop(r1, r2) (1)

let 𝑥 = loop(r1, r2) in comr3,r4 2. (2)

loop(r1, r2); comr3,r4 2. (3)

Seen in this light, one might suggest a lenient semantics. Lenient evaluation is a nondeterministic

evaluation strategy that is neither strict nor lazy [Tremblay 2000] but has much in common with

call-by-need [Ariola et al. 1995; Arvind et al. 1996]. Its famous exponents include Id [Arvind et al.

1986], parallel Haskell [Arvind et al. 1996], and the Verse calculus [Augustsson et al. 2023].

Lenient semantics allows expressions to be evaluated concurrently up to data dependency. Hence
it would indeed allow comr3,r4 2 and loop(r1, r2) to execute concurrently because neither expression

depends on the other. But unfortunately, a lenient semantics would be too concurrent! Specifically,
it allows us to unfold the loop(r1, r2) call once:

comr1,r2 1@r1; loop(r2, r1); comr3,r4 2 (4)

And then to unfold the loop(r2, r1) call:
comr1,r2 1@r1; comr2,r1 1@r2; loop(r1, r2); comr3,r4 2 (5)

And then to reduce comr2,r1 1@r2. In other words, a lenient semantics would tell us r2 can send a

message to r1 in the initial state of the network. But by inspecting the projected code in Figure 7,

we can see that r2 will never send a message until it first receives a message from r1.
Thus lenient evaluation captures the concurrency up to data dependency of choreographies, but

fails to capture process dependencies that enforce sequentiality. Armed with this insight, we will use

prior art in non-strict 𝜆-calculi [Ariola et al. 1995; Arvind et al. 1996; Maurer et al. 2017] to develop

a language that is lenient up to process ordering—or semilenient for short.

3.3 Semilenient Semantics
We now explain 𝜆𝜒 ’s semilenient semantics formally. We do this by defining notions of reduction—

rules (com), (select), (app), (let), (if), (def), and (commute) in Figure 5—and an appropriate notion

of evaluation context. Unlike ordinary evaluation contexts, a choreographic evaluation context is

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

Relax! The Semilenient Core of Choreographic Programming (Extended Version) 269:11

indexed by a set of process names Ep. Decomposing a choreography𝑀 with an evaluation context

𝑀 = Ep [𝑀 ′] means that, if p ∈ p, then p will evaluate 𝑀 ′
in its next step. Since choreographies

are concurrent, a term 𝑀 can have distinct decompositions𝑀 = Ep [𝑀 ′] = Eq [𝑀 ′′] for different
processes p, q.
Our evaluation contexts may appear complex, but in fact there are principles we can use to

derive them. Whereas evaluation contexts in the network language are stacks of frames (Section 2),

choreographic evaluation contexts are stacks of (choreographic) frames together with so-called

answering contexts, explained below.

3.3.1 Choreographic Frames and Answering Contexts. A (choreographic) frame F is the chore-

ographic analogue of a network-level frame. Notice that each kind of network-level frame in

Figure 1 corresponds directly to a choreographic frame in Figure 5; the only extra case we add is

F F let 𝑥 : 𝑇 = • in 𝑀 because let-bindings are no longer just syntactic sugar in 𝜆𝜒 .

An answering context A is a context where, if p ∉ pn(A), then p has no work left to do. By

filling an answering context with a value A[𝑉], we make a choreographic term where p is ready

to pass 𝑉 to its enclosing context. Answering contexts are analogous to the notion of answers
in the call-by-need lambda calculus [Ariola et al. 1995] and the notion of tail contexts in System

𝐹 𝐽 [Maurer et al. 2017].

How did we arrive at these definitions for F and A? In fact, they emerge as properties of

the projection function, which we define in Section 4. Choreographic frames are defined so that

F projects to a network-level frame F . Meanwhile, answering contexts are defined so that the

projection of A[𝑀] for p is equal to the projection of 𝑀 whenever p ∉ pn(A). In other words,

answering contexts are precisely the contexts that disappear during projection.

3.3.2 Notions of Reduction and the Commute Rule. Most of the notions of reduction in 𝜆𝜒 should

be unsurprising. The (com) rule moves a constant from p to q. The (select) rule simply steps into its

continuation; it is a synchronization between p and q. The (if) and (def) rules are the same as in

the network level, but with extra annotations to involve processes. However, the network’s (p-app)
rule is split into two steps: (app) reduces an application (𝜆𝑥 : 𝑇 .𝑀) 𝑀 ′

into an explicit let-binding
let 𝑥 : 𝑇 = 𝑀 ′ in 𝑀 , allowing our evaluation contexts to begin evaluating 𝑀 without waiting

for 𝑀 ′
to be a value. Once 𝑀 ′

is a value, the (let) rule substitutes that value into the body of the

let-binding. (Another example of this can be seen in the call-by-need calculus, where the context

let 𝑥 = 𝑀 ′ in 𝑀 denotes a “thunk” 𝑥 bound to 𝑀 ′
in the expression 𝑀 [Ariola et al. 1995].) The

transition labels for all these rules are generally determined by the redex, except in the case of

(app) and (commute) where the label p can be any list of process names.

The (commute) rule is unusual: it pushes a frame F into an answering context A. This rule,

which we borrowed from System 𝐹 𝐽 [Maurer et al. 2017], precisely captures the mysterious and

ad-hoc “restructuring” rules from Chor𝜆. Consider the term:(
let 𝑥 = 𝑓 (r) in
comp,q

)
0@p,

where 𝑓 (r) diverges. Its projection at p is simply sendq 0 because the call 𝑓 (r) is irrelevant to p.
(Our type system guarantees, in general, that 𝑓 (r) only involves r.) Likewise, the projection at q is

recvp ⊥. In fact we can construct many examples like this:

comp,q

(
let 𝑥 = 𝑓 (r) in
0@p

)
let 𝑥 =

(
let 𝑦 = 𝑓 (r) in
0@p

)
in

comp,q 𝑥

comp,q

©­­­«
if

(
let 𝑥 = 𝑓 (r) in
true@p

)
then 0@p
else 1@p

ª®®®¬
Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

269:12 Dan Plyukhin, Xueying Qin, and Fabrizio Montesi

In each case above, the choreography semantics should allow p and q to communicate without

waiting for r—but the nonterminating computation 𝑓 (r) prevents us from ever creating the redex

comp,q 0@p. Higher-order choreographic languages therefore need rules for rewriting terms to

expose reducible expressions; let us call these extra rules restructuring rules.
How does one know what restructuring rules a choreography language will need? In past

approaches, there was only one way to find out: try to prove that choreographies and networks

correspond, and addmore restructuring rules when the proof gets stuck. This solution is unappealing

because even a simple language requires many restructuring rules, and it is easy to miss cases

when working by hand. Our presentation reveals a hidden structure behind the restructuring rules:

they are all instances of the (commute) rule.
Figure 8 shows the restructuring rules generated by (commute) if we inline the definitions

of F and A. Some of these rules further reinforce the connection between choreographies and

non-strict calculi: (let-let) and (app-let) correspond to (let-A) and (let-C) from the call-by-need

𝜆-calculus [Ariola et al. 1995]. These rules, along with (let-app), (app-sel), and (sel-app), are all
found (with a slightly different presentation) in Chor𝜆 [Cruz-Filipe et al. 2023].

Surprisingly, the remaining three rules (if-let), (if-sel), and (let-sel) from Figure 8 are all missing

from the original publication of Chor𝜆. Upon closer inspection, we discovered that all three rules

are indeed necessary for the correspondence result, and they were missed because they correspond

to subtle edge cases in the proof. Chor𝜆’s semantics tells us the following three programs will never

evaluate 𝑀1 if 𝑓 (r) diverges, but any compiler that uses Chor𝜆’s projection function will in fact

evaluate𝑀1:

if
(
let 𝑥 = 𝑓 (r) in
true@p

)
then 𝑀1 else 𝑀2

let 𝑥 = 𝑓 (r) in
if (selectr,s 𝑙 true@p)
then 𝑀1 else 𝑀2

let 𝑥 = 𝑓 (r) in
let 𝑦 = (selectr,s 𝑙 true@p) in
if 𝑦 then 𝑀1 else 𝑀2

The fact that the (commute) rule guided us to these missing rules in Chor𝜆 is a testament to the

usefulness of our approach.

3.4 Properties of 𝜆𝜒

Applying (app) and (commute) reductions is similar to putting a term in Administrative Normal

Form (ANF) [Flanagan et al. 1993]. We define normal forms like so:

Definition 3.1. A choreography𝑀 is in normal form if it cannot be expressed in the form Ep [Δ]
for any p, where Δ is a redex for (app) or (commute).

Every closed choreography has a normal form. In the following,𝑀
𝜏
↠ 𝑀 ′

denotes a sequence of

zero or more 𝜏 transitions𝑀
𝜏−→ . . .

𝜏−→ 𝑀 ′
:

Lemma 3.2. For any closed choreography𝑀 , there exists �̃� in normal form where𝑀
𝜏
↠ �̃� using

only (commute) and (app) reductions.

Proof. Omitted for space. Complete proofs can be found in Appendix A. □

As we saw in Section 3.3.2, putting a choreography in normal form can expose redexes that allow

processes to make progress. Normal forms are also simplify proofs, as we will see in Section 4.

Next, we establish an important lemma about the “next steps” a choreography can take. We will

use the superscript (−)∗ to denote a stack of contexts—for example, A∗
is either a hole • or an

answering context filled with a stack A[A∗].
Definition 3.3. A redex at p is a choreographic redex Δ where either (1) Δ

𝜇↦−−→ Δ′
for some 𝜇,Δ′

where p ∈ pn(𝜇), (2) Δ = comq,p 𝑀 for some q, 𝑀 , or (3) Δ = if 𝑀 then 𝑀1 else 𝑀2 for some

𝑀,𝑀1, 𝑀2 where p ∈ (pn(𝑀1) ∪ pn(𝑀2)) \ pn(𝑀).

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

Relax! The Semilenient Core of Choreographic Programming (Extended Version) 269:13

if (let 𝑥 = 𝑀1 in 𝑀2) then 𝑀3 else 𝑀4 ↦→ let 𝑥 = 𝑀1 in (if 𝑀2 then 𝑀3 else 𝑀4) (if-let)

let 𝑦 = (let 𝑥 = 𝑀1 in 𝑀2) in 𝑀3 ↦→ let 𝑥 = 𝑀1 in (let 𝑦 = 𝑀2 in 𝑀3) (let-let)

𝑉 (let 𝑥 = 𝑀1 in 𝑀2) ↦→ let 𝑥 = 𝑀1 in 𝑉 𝑀2 (app-let)

(let 𝑥 = 𝑀1 in 𝑀2) 𝑀3 ↦→ let 𝑥 = 𝑀1 in 𝑀2 𝑀3 (let-app)

𝑉 (selectp,q 𝑙 𝑀) ↦→ selectp,q 𝑙 (𝑉 𝑀) (app-sel)

(selectp,q 𝑙 𝑀1) 𝑀2 ↦→ selectp,q 𝑙 (𝑀1 𝑀2) (sel-app)

if (selectp,q 𝑙 𝑀1) then 𝑀2 else 𝑀3 ↦→ selectp,q 𝑙 (if 𝑀1 then 𝑀2 else 𝑀3) (if-sel)

let 𝑥 = selectp,q 𝑙 𝑀1 in 𝑀2 ↦→ selectp,q 𝑙 (let 𝑥 = 𝑀1 in 𝑀2) (let-sel)

Fig. 8. This figure shows all the rules entailed by (commute) if we wrote them out explicitly.

Lemma 3.4. Let𝑀 be a closed choreography with p ∈ pn(𝑀). Either:
(1) 𝑀 = Ep [Δ] for some evaluation context Ep where Δ is a redex at p, or
(2) 𝑀 = A∗ [𝑉] for some stack of answering contexts A∗ where p ∉ pn(A∗) and 𝑉 is a value.

The above result generalizes the usual property in deterministic languages, where every term is

either a value or has an available redex. The next lemma implies that if𝑀 is in normal form, the

decomposition𝑀 = Ep [Δ] is unique for each process p.

Lemma 3.5. Let𝑀 be a closed choreography in normal form and let p, q be processes that are not
necessarily distinct. Assume𝑀 = Ep [Δ1] = Eq [Δ2] for some evaluation contexts Ep, Eq where Δ1 and
Δ2 are redexes at both p and q. Then Ep = Eq and Δ1 = Δ2.

We conclude by showing the type system for 𝜆𝜒 is soundwith respect to our semantics. This result,

coupled with the Projection Theorem, will allow us to prove that projections are deadlock-free in

Section 4.

Theorem 3.6 (Progress of evaluation). Let𝑀 be a choreography. If there exist Θ,𝑇 such that
Θ; ∅ ⊢ 𝑀 : 𝑇 , then either𝑀 is a value 𝑉 or there exists𝑀 ′ such that𝑀

𝜇−→ 𝑀 ′.

Theorem 3.7 (Preservation of evaluation). Let𝑀 be a choreography. If there exist Θ, Γ,𝑇 such
that Θ; Γ ⊢ 𝑀 : 𝑇 , then Θ; Γ ⊢ 𝑀 ′

: 𝑇 for any𝑀 ′ such that𝑀
𝜇−→ 𝑀 ′.

4 Projection
Now the rubber meets the road: we present the projection function, which compiles 𝜆𝜒 choreogra-

phies into networks. We will also show that any execution of the choreography can be matched by

an execution of its projection (completeness) and any execution of the projection can be matched by

the choreography (soundness). Together, these two properties are called the Projection Theorem.

Our proof strategy will take a significantly different route from prior work [Cruz-Filipe et al. 2023;

Hirsch andGarg 2022;Montesi 2023].We beginwith a series of useful lemmas relating choreographic

and network-level evaluation contexts. Then, instead of proving a direct correspondence between

choreographies and their projections, we do it in two steps: first establishing a correspondence

between choreographies and “superpowered” networks that can predict the future, and then

showing that superpowered networks are equivalent to ordinary networks. The payoff for this

extra work will be an elegant proof of the Projection Theorem and a clean correspondence (namely,

a weak bisimulation) between 𝜆𝜒 and the network language.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

269:14 Dan Plyukhin, Xueying Qin, and Fabrizio Montesi

J𝜆𝑥 : 𝑇 .𝑀Kp =

{
𝜆𝑥 : J𝑇 Kp .J𝑀Kp if p ∈ pn(𝑇) ∪ pn(𝑀)
⊥ otherwise

Jlet 𝑥 : 𝑇 = 𝑀1 in 𝑀2Kp =

{
(𝜆𝑥 : J𝑇 Kp .J𝑀2Kp) J𝑀1Kp if p ∈ pn(𝑇) ∪ pn(𝑀1)
J𝑀2Kp otherwise

J𝑀1 𝑀2Kp =

{
J𝑀1Kp J𝑀2Kp if p ∈ pn(𝑀1) ∪ pn(𝑀2)
⊥ otherwise

Jif 𝑀 then 𝑀1 else 𝑀2Kp =


if J𝑀Kp then J𝑀1Kp else J𝑀2Kp if p ∈ pn(type(𝑀))
(𝜆𝑥 : ⊥.J𝑀1Kp ⊔ J𝑀2Kp) J𝑀Kp else if p ∈ pn(𝑀)
J𝑀1Kp ⊔ J𝑀2Kp otherwise

q
comq,r

y
p =


sendr if p = q

recvq if p = r

⊥ otherwise

q
selectq,r 𝑙 𝑀

y
p =


⊕r 𝑙 J𝑀Kq if p = q

&q{𝑙 : J𝑀Kr} if p = r

J𝑀Kp otherwise

J𝑓 (p1, . . . , p𝑛)Kp =

{
𝑓𝑖 (p1, . . . , p𝑖−1, p𝑖+1, . . . , p𝑛) if p = p𝑖
⊥ otherwise

J𝑐@rKp =

{
𝑐 if p = r

⊥ otherwise

J𝑥Kp =

{
𝑥 if p ∈ pn(type(𝑥))
⊥ otherwise

Operators:

&q{𝑙𝑖 : 𝑃𝑖 }𝑖∈I ⊔ &q{𝑙 𝑗 : 𝑃 𝑗 } 𝑗∈J = &q{𝑙𝑘 : 𝑃𝑘 }𝑘∈I∪J if I and J are disjoint

⊥ ⊔ ⊥ = ⊥
Types:

r
𝑇 1 →p 𝑇 2

z

p
=

{
J𝑇 1Kp → J𝑇 2Kp if p ∈ pn(𝑇 1) ∪ pn(𝑇 2) ∪ p

⊥ otherwise

J𝛼@rKp =

{
𝛼 if p = r

⊥ otherwise

Fig. 9. Endpoint projection for 𝜆𝜒 .

4.1 The Projection Function
Projection is formally defined in Figure 9 by the relation J𝑀Kp = 𝑃 , where 𝑃 is the projection of

𝑀 for process p. The relation is defined by induction on the typing derivations of choreographies

as in prior work [Cruz-Filipe et al. 2023; Hirsch and Garg 2022], though we omit the derivations

in the figure for clarity. When the subscript is omitted, J𝑀K is the parallel composition of the

projections of the processes in the choreography, i.e., J𝑀K = p1
[
J𝑀Kp1

]
| . . . | pn

[
J𝑀Kpn

]
where

pn(𝑀) = {p1, . . . , p𝑛}.
Many of the cases in Figure 9 should be unsurprising. For example, comp,q is projected to sendq

for p and recvp for q. Notice also that, whenever a process p is not involved in𝑀 , the choreography

is projected to the bottom value ⊥. However, to understand the projection of an if-expression,
readers unfamiliar with choreographic programming now need to be introduced to the concept

of projectability [Cruz-Filipe and Montesi 2020; Montesi 2023]. Notice that Figure 9 contains the

mapping:

Jif 𝑀 then 𝑀1 else 𝑀2Kp = J𝑀1Kp ⊔ J𝑀2Kp when p ∉ pn(𝑀). (6)

This is because, if the expression𝑀 is evaluated to a boolean at some q, there is no way for p to

directly observe q’s value; we say that p needs knowledge of choice. To obtain knowledge of choice,

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

Relax! The Semilenient Core of Choreographic Programming (Extended Version) 269:15

B F ⊕p 𝑙 B | &p{𝑙 : B} | (𝜆𝑥 : 𝑆 .B) 𝑃 | •
O F B[O] | E[O] | •

Fig. 10. Degenerate contexts for networks.

q must explicitly inform p about its decision via selections selectq,p 𝑙1 in 𝑀1 and selectq,p 𝑙2 𝑀2,

where 𝑙1 and 𝑙2 are distinct labels; these selections can be seen in Figure 4.

Choreographic languages ensure that knowledge of choice is propagated correctly via the merge
operator (⊔) seen in Equation (6) and defined in Figure 9. The merge operator is a partial function,

so the projection can be undefined if its criteria are not met. A choreography with no projection is

said to be unprojectable. In the rest of this section, we will assume all choreographies are projectable

unless otherwise stated. (Experts will notice our merge operator is more restrictive than in Chor𝜆;

see Section 5 for details.)

4.2 Properties of Projection
We now establish some properties about projection and evaluation contexts, fulfilling the promises

made in Section 3. All choreographies are assumed to be projectable and may contain free variables,

unless otherwise stated.

Informally, the projection J𝑀Kp is always “the same as𝑀 , but with all the parts not related to p
edited out”. For example, values are projected to values and any𝑀 where p is not involved will be

projected to ⊥. The latter result is used to establish modularity: editing the behavior of q should

not change the projection for p if p ≠ q.

Lemma 4.1. If 𝑉 is a choreographic value then J𝑉 Kp is a network-level value.

Lemma 4.2. Let𝑀 be a choreography where p ∉ pn(𝑀). Then J𝑀Kp = ⊥.

Lemma 4.3 (Modularity). A context 𝐶 is a choreography with a unique hole • in place of some
subexpression. Let 𝐶 be a context and𝑀1, 𝑀2 choreographies such that p ∉ pn(𝑀1) and p ∉ pn(𝑀2).
Then J𝐶 [𝑀1]Kp = J𝐶 [𝑀2]Kp.

Below we establish novel properties of choreographic evaluation contexts. Lemma 4.4 is our

“fundamental property of answering contexts”: if a process r is not involved in A, then the context

will disappear during projection. Likewise, Lemma 4.5 is the “fundamental property of choreographic

frames”: if r is involved in the scrutinee of a choreographic frame F , the projection will be a network-

level frame, i.e., JF [𝑀]Kr = F [J𝑀Kr] for some F . Choreographic redexes Δ at r also project to

network-level redexes 𝛿 at r, so long as Δ is not a (commute) or (app) redex, by Lemma 4.6. When

the choreography is in normal form, these results imply that evaluation contexts containing redexes

are projected to evaluation contexts containing redexes: JEr [Δ]Kr = E[𝛿].
But before we can define these properties, there is a snag: we know JEr [𝑀]Kp should be an

evaluation context when r = p, but what about when r ≠ p? For this we must introduce degenerate
contexts B,O defined in Figure 10. These contexts will play an important role in Section 4.3, but for

now we will simply assert that they emerge naturally in the lemmas below as a complement to

evaluation contexts.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

269:16 Dan Plyukhin, Xueying Qin, and Fabrizio Montesi

Lemma 4.4. Let A be an answering context.
(1) If r ∉ pn(A) then JA[𝑀]Kr = J𝑀Kr for any𝑀 .
(2) If r ∈ pn(A) then there exists B such that, for any𝑀 , JA[𝑀]Kr = B[J𝑀Kr].

Lemma 4.5. Let 𝑀 = F [𝑁] where Θ; Γ ⊢ 𝑁 : 𝑇 . Then there exists a network-level frame F such
that, for any 𝑁 ′ where Θ; Γ ⊢ 𝑁 ′

: 𝑇 ,
(1) If r ∈ pn(𝑁 ′) then F [J𝑁 ′Kr] = JF [𝑁 ′]Kr.
(2) If r ∉ pn(𝑁 ′) then F [J𝑁 ′Kr]

𝜏
↠ JF [𝑁 ′]Kr.

Lemma 4.6. Let Δ be a redex at r that is not an (app) or (commute) redex. Then JΔKr = 𝛿 for some
network-level redex 𝛿 .

Lemma 4.7. Let 𝑀 = Er [𝑁] where Θ; Γ ⊢ 𝑁 : 𝑇 . Then there exists a network-level evaluation
context E such that, for any 𝑁 ′ where Θ; Γ ⊢ 𝑁 ′

: 𝑇 ,
(1) If r ∈ pn(𝑁 ′) then E[J𝑁 ′Kr] = JEr [𝑁 ′]Kr.
(2) If r ∉ pn(𝑁 ′) then E[J𝑁 ′Kr]

𝜏
↠ JEr [𝑁 ′]Kr.

4.3 The Projection Theorem
How does a choreography𝑀 relate to its projection J𝑀K? One might hope they directly correspond,

so 𝑀
𝜇−→ 𝑀 ′

implies J𝑀K
𝜇−→ J𝑀 ′K and vice versa. As a pair of diagrams, where the vertical bar

denotes endpoint projection:

𝑀 𝑀 ′ 𝑀 𝑀 ′

J𝑀K J𝑀 ′K J𝑀K J𝑀 ′K

𝜇 𝜇

𝜇 𝜇

This would mean the projection function J−K is a (strong) bisimulation. But unfortunately projection
is not a bisimulation, even in first-order models. Let us consider several reasons why.

4.3.1 The Multistep Problem. Certain computations can be done in one step choreographically,

but require multiple steps at the network level. Take substitution for example, with types omitted

for legibility:

let 𝑥 = comp,q in 𝑥 comp,q

p
[
(𝜆𝑥 . 𝑥) sendq

]
| q

[
(𝜆𝑥. 𝑥) recvp

]
p
[
sendq

]
| q

[
recvp

]
𝜏

𝜏

Notice the projection in the bottom left corner is a pair of processes, with

q
let 𝑥 = comp,q in 𝑥

y
p =

(𝜆𝑥. 𝑥) sendq and
q
let 𝑥 = comp,q in 𝑥

y
q = (𝜆𝑥. 𝑥) recvp by the definition of projection in Figure 9.

Whereas the choreography can reduce in one step using (let), the network must take two steps: a

(p-app) step at p and one at q.
The textbook solution is to add runtime-only terms [Montesi 2023; Plyukhin et al. 2024]: in the

example above, we could have the choreography𝑀 reduce to the “signposted” term q.𝑀 to indicate

that q has taken a step but p has not. Signposting would allow us to prove strong correspondence

results between choreographies and networks, but it clutters the syntax and semantics. To make 𝜆𝜒

more accessible to newcomers, we avoid this route. We opt instead to exhibit a weak bisimulation
between choreographies and their projections, so that for example𝑀

𝜏−→ 𝑀 ′
implies J𝑀K

𝜏
↠ J𝑀 ′K.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

Relax! The Semilenient Core of Choreographic Programming (Extended Version) 269:17

4.3.2 The Choice Problem. Choreographies have global information that is not immediately

apparent at the process level. Consider what happens to the projection of the choreography

if true@p then 𝑀1 else 𝑀2, where 𝑀1 = selectp,q 𝑙 true@q and 𝑀2 = selectp,q 𝑙 ′ false@q, after p
evaluates the guard of the if-expression:

if true@p then 𝑀1 else 𝑀2 𝑀1 true@q

p
[
J𝑀Kp

]
| q

[
J𝑀1Kp ⊔ J𝑀2Kp

]
p
[
J𝑀1Kp

]
| q

[
J𝑀1Kp ⊔ J𝑀2Kp

]
p
[
⊥
]
| q

[
true

]
𝜏 𝜏

𝜏 𝜏

There is an intermediate step where the choreography is𝑀1 = selectp,q 𝑙 true@q, but the network
is not equal to J𝑀1K. Specifically, since the knowledge of p’s choice has not yet propagated to q,
the body of q is the merge J𝑀1Kq ⊔ J𝑀2Kq instead of J𝑀1Kq.
In general the choice problem means projection is not even a weak bisimulation, because

nonterminating computations can prevent the network from ever propagating all the knowledge

of choice available in the choreography. The textbook solution for this problem is to prove a

weaker property, namely that𝑀
𝜇
−→ 𝑀 ′

and J𝑀K
𝜇
−→ N implies N has “at least as many branches”

as J𝑀 ′K, formalized by a relation (⊑) [Montesi 2023]. We will take a slightly different approach,

incorporating the (⊑) relation as part of a more powerful relation introduced in Section 4.3.4.

4.3.3 The Recursion Problem. Choreographies in 𝜆𝜒 do not necessarily terminate. Consider the

program (with types omitted):

diverge(p) =def diverge(p)

𝑀 =
©­«
let 𝑥 = diverge(p) in
let 𝑓 = comp,q in
𝑓

ª®¬ ,
which has the projection:

diverge() =def diverge()
J𝑀Kp = (𝜆𝑥. (𝜆𝑓 . 𝑓) sendq) diverge()
J𝑀Kq = (𝜆𝑓 . 𝑓) recvp.

Semilenient semantics allows us to evaluate 𝑀 = Eq [let 𝑓 = comp,q in 𝑓] 𝜏−→ Eq [comp,q]. This
produces a term𝑀 ′ = Eq [comp,q] with the projection:

J𝑀 ′Kp = (𝜆𝑥. sendq) diverge()
J𝑀 ′Kq = recvp

Notice that indeed J𝑀Kq ↦−→ J𝑀 ′Kq is a legal transition in the network language, but J𝑀Kp ↦−→ J𝑀 ′Kp
is not. In fact, p can never reduce the subterm (𝜆𝑓 . 𝑓) sendq because the subterm diverge() never
terminates. Hence the choreography can take steps that its projection may never match.

Chor𝜆 solves the problem above by adding rewriting rules at the network level, allowing p to

reduce the subterm (𝜆𝑓 . 𝑓) sendq out of order. These extra rules are safe to add because they have

no side-effects and because the 𝜆-calculus is confluent, but it is unsatisfying to have rules in the

semantics of processes that are only used for proofs.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

269:18 Dan Plyukhin, Xueying Qin, and Fabrizio Montesi

4.3.4 A Unified Approach. We present a novel approach that handles all three of the above problems

in one fell swoop. The idea is to introduce a prophecy relation
1
on networksN⇝ N ′

, whereN ′
is

obtained by pruning branches in N and performing 𝜏-transitions—possibly out of order. Formally:

p
[
O[𝑃]

]
| N ⇝ p

[
O[𝑃 ′]

]
| N if 𝑃 ↦−→ 𝑃 ′ (compute)

p
[
O[&q{𝑙𝑖 : 𝑃𝑖 }𝑖∈I]] | N ⇝ p

[
O[&q{𝑙𝑖 : 𝑃𝑖 }𝑖∈J]] | N if J ⊆ I (prune)

p
[
O[F [B[𝑃]]]

]
| N ⇝ p

[
O[B[F [𝑃]]]

]
| N (commute)

p
[
O[⊥ 𝑃]

]
| N ⇝ p

[
O[(𝜆𝑥 : ⊥. ⊥) 𝑃]

]
| N (bottom2)

where O denotes a degenerate context, as defined in Figure 10. As we saw in Sections 4.3.1 to 4.3.3,

some steps at the choreography level require prophecy steps at the network level:

Lemma 4.8. Let (⇝⇝) be the reflexive transitive closure of (⇝). If𝑀 𝜏
↠ 𝑀 ′ only by (commute) and

(app) reductions, then J𝑀K ⇝⇝ J𝑀 ′K.

Lemma 4.9. Let p, r be roles such that p ≠ r. Let𝑀 = Er [𝑁] where Θ; Γ ⊢ 𝑁 : 𝑇 . Then there exists a
degenerate context O such that, for any 𝑁 ′ where Θ; Γ ⊢ 𝑁 ′

: 𝑇 ,

(1) If p ∈ pn(𝑁 ′) then O[J𝑁 ′Kp] = JEr [𝑁 ′]Kp.
(2) If p ∉ pn(𝑁 ′) then O[J𝑁 ′Kp] ⇝⇝ JEr [𝑁 ′]Kp.

We will use the prophecy relation to capture the idea that a choreography “runs faster (and

smarter!)” than its projection, but the projection can always take a finite number of prophecy steps

to “catch up”. Formally: our goal will be to show that the relationN⇝⇝ J𝑀K is a weak bisimulation

between networks and choreographies.

We prove the result in two pieces. First, we prove the Prophecy Theorem (Theorem 4.10), which

shows that prophecy steps commute with ordinary steps in the network. Second, we prove the

Projection Theorem (Theorem 4.11), which shows that executions of choreographies and their

choreographies correspond, mediated by the prophecy relation. Then we compose the two results

to establish a weak bisimulation (Theorem 4.12). This proof technique is more modular than past

work, which implicitly combines the Prophecy and Projection Theorems into one monolithic proof

by induction [Cruz-Filipe et al. 2023; Montesi 2023].

We begin with the Prophecy Theorem. The completeness direction says that if a networkN1 can

“catch up” to a choreography’s projection J𝑀K using prophecy steps, then any step by J𝑀K can be

matched by N1 after first performing some 𝜏-transitions. Conversely, soundness means that any

visible transition by N1 can be matched by the projection, and invisible transitions by N1 might

not require the projection to take any steps at all.

Theorem 4.10 (Prophecy Theorem). Let𝑀 be a choreography, N a network, and N⇝⇝ J𝑀K.

• (Completeness) If J𝑀K
𝜇−→ ˜N ′ then there exists N ′ such that N 𝜏

↠
𝜇−→ N ′ ⇝⇝ ˜N ′ .

• (Soundness) IfN
𝜇
−→ N ′ where 𝜇 ≠ 𝜏 then there exists ˜N ′ such that J𝑀K

𝜇
−→ ˜N ′ andN ′ ⇝⇝ ˜N ′ .

If N 𝜏−→ N ′ then either N ′ ⇝⇝ J𝑀K or there exists ˜N ′ such that J𝑀K
𝜏−→ ˜N ′ and N ′ ⇝⇝ ˜N ′ .

Proof (sketch). Let (𝜇?−→) denote exactly one step if 𝜇 ≠ 𝜏 and at most one step if 𝜇 = 𝜏 . For the

Completeness direction, it suffices to prove that if N⇝ ˜N 𝜇−→ ˜N ′
then there exists N ′

such that

N 𝜏
↠

𝜇−→ N ′ ⇝⇝ ˜N ′
. For Soundness, it suffices to prove that if N⇝ ˜N⇝⇝ J𝑀K and N 𝜇−→ N ′

then

1
The name for this relation is inspired by the related idea of prophecy variables [Abadi and Lamport 1991].

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

Relax! The Semilenient Core of Choreographic Programming (Extended Version) 269:19

there exists
˜N ′

such that
˜N 𝜇?−→ ˜N ′

and N ′ ⇝⇝ ˜N ′
. As a pair of diagrams:

˜N ˜N ′ ˜N ˜N ′

N N ′ N N ′

𝜇 𝜇?

𝜏 𝜇 𝜇

The proofs proceed by straightforward pattern matching of critical pairs [Barendregt 1984]. □

Next we establish the Projection Theorem. Unlike prior work, we mediate the correspondence

between choreographies and their projection via the prophecy relation, and we use the properties

of evaluation contexts established in Section 4.2. This extra structure leads to nice diagrammatic

proofs, capturing our intuition for how the two models correspond.

The completeness direction tells us that compiled code exhibits all the behaviors visible in the

choreography. The soundness direction (which is typically much harder to prove) tells us that

compiled code only exhibits behaviors from the choreography.

Theorem 4.11 (Projection Theorem). Let𝑀1 be a closed choreography.

• (Completeness) If𝑀1

𝜇
−→ 𝑀2 is not an (app) or (commute) step, then J𝑀1K

𝜇
−→⇝⇝ J𝑀2K.

• (Soundness) If J𝑀1K
𝜇
−→ N2 then there exists𝑀2 such that N2 ⇝⇝ J𝑀2K and𝑀1

𝜏
↠

𝜇
−→ 𝑀2.

Proof (Completeness). Proceed by case analysis on𝑀1

𝜇−→ 𝑀2.

• Assume 𝜇 = comp,q 𝑐 . Then 𝑀1 = Ep,q [comp,q 𝑐]. Since projection at p and q preserves

evaluation contexts with redexes at p and q (Lemma 4.7), there exist E, E′,N ′,N2 such that:

Ep,q [comp,q 𝑐@p] Ep,q [𝑐@q]

p
[
E[sendq 𝑐]

]
| q

[
E′ [recvp ⊥]

]
| N ′ N2 p

[q
Ep,q [𝑐@q]

y
p

]
| q

[
E′ [𝑐]

]
| N ′comp,q 𝑐 𝜏

comp,q 𝑐

Specifically, N2 = p
[
E[⊥]

]
| q

[
E′ [𝑐]

]
| N ′

. The only complication is that p ∉ pn(𝑐@q), soq
Ep,q [𝑐@q]

y
p ≠ E[⊥] in general; instead, Lemma 4.7 only guarantees process p can catch up

to its projection via E[⊥] 𝜏
↠

q
Ep,q [𝑐@q]

y
p. At every other process r ∉ {p, q}, the projection

is unchanged due to modularity (Lemma 4.3). Since (𝜏
↠) ⊆ (⇝⇝), we have J𝑀1K

𝜇−→⇝⇝ J𝑀2K.

• Assume 𝜇 = selectp,q 𝑙 . Similar to above.

• Assume 𝑀1 = Ep [let 𝑥 : 𝑇 = 𝑉 in 𝑀] and that 𝑀2 = Ep [𝑀 [𝑥 := 𝑉]]. Crucially, one must

show that all processes in pn(𝑉) ∪ pn(𝑀) can match the choreography’s step—not just p.
For illustrative purposes, take q ∈ pn(𝑉) \ {p}. Then by Lemmas 4.1 and 4.7 there exist

N, E, 𝑃, 𝑆, 𝐿,O, 𝑄, 𝐿′, 𝑆 ′ such that:

Ep [let 𝑥 : 𝑇 = 𝑉 in 𝑀] Ep [𝑀 [𝑥 := 𝑉]]

p
[
E[(𝜆𝑥 : 𝑆 . 𝑃) 𝐿]

]
| q

[
O[(𝜆𝑥 : 𝑆 ′ . 𝑄) 𝐿′]

]
| N p

[
E[𝑃 [𝑥 := 𝐿]]

]
| q

[
O[𝑄 [𝑥 := 𝐿′]]

]
| N

𝜏

𝜏

To complete the commuting diagram, p may need to catch up to its projection like above,

and q may need to use the prophecy relation (⇝). Below we enumerate the four possible

cases, and see that J𝑀1Kq ⇝⇝ J𝑀2Kq for each q:
– For p, J𝑀1Kp = E[(𝜆𝑥 : J𝑇 Kp. J𝑀Kp) J𝑉 Kp]. By LemmaA.9, J𝑀Kq [𝑥 := J𝑉 Kq] = J𝑀 [𝑥 := 𝑉]Kq.
Hence, by Lemma 4.7, J𝑀1Kp

𝜏
↠ J𝑀2Kp.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

269:20 Dan Plyukhin, Xueying Qin, and Fabrizio Montesi

– For each q ∈ pn(𝑉) \ {p}, there exists O such that J𝑀1Kq = O[(𝜆𝑥 : J𝑇 Kq . J𝑀Kq) J𝑉 Kq] by
Lemma A.10. Then J𝑀1Kq ⇝ O[J𝑀Kq [𝑥 := J𝑉 Kq]]. Hence J𝑀1Kq ⇝⇝ J𝑀2Kq.

– For each q ∈ pn(𝑀) \ pn(𝑉), there exists O such that J𝑀1Kq = O[J𝑀Kq] by Lemma A.10.

Hence J𝑀1Kq = J𝑀2Kq.

– For all remaining processes q, J𝑀1Kq = J𝑀2Kq by Lemma 4.3.

• Assume 𝑀1 = Ep [𝑀] where 𝑀 = if 𝑐@p then 𝑀true else 𝑀false. Without loss of generality,

let 𝑐 = true. Here we must show that every process q ∈ pn(𝑀true) ∪ pn(𝑀false) can match the

choreography’s step. Using the same arguments as above, there exist N, E,O, 𝑃,I,J where

J ⊆ I and there exist 𝑙𝑖 , 𝑄𝑖 for each 𝑖 ∈ I such that:

Ep [𝑀] Ep [𝑀true]

p
[
E[𝑃]

]
| q

[
O[&r{𝑙𝑖 : 𝑄𝑖 }𝑖∈I]

]
| N p

[
E[𝑃true]

]
| q

[
O[&r{𝑙 𝑗 : 𝑄 𝑗 } 𝑗∈J]

]
| N

𝜏

𝜏

Here q can match the choreography’s step by pruning its branches with the prophecy relation.

• Assume 𝑀1 = Ep [𝑓 (p)] and 𝑀2 = Ep [𝑀 [p := q]], where (𝑓 (q) : 𝑆 = 𝑀) ∈ D. By the same

arguments as above, J𝑀1K
𝜏−→⇝⇝ J𝑀2K.

□

Proof (Soundness). Proof by case analysis on J𝑀1K
𝜇−→ N2. By Lemmas 3.2 and 4.8, we can

assume𝑀1 is in normal form without loss of generality.

• Assume 𝜇 = comp,q. Then J𝑀1K = p
[
E[sendq 𝑐]

]
| q

[
E′ [recvp ⊥]

]
| N ′

. At this point in the

proof, we do not know anything about the structure of𝑀1—but we can use results established

in Section 4.2 to discover that structure.

By Lemmas 3.4, 4.1 and 4.4, there exist Ep,Δ such that 𝑀1 = Ep [Δ]. Moreover, since 𝑀1

is in normal form, Δ cannot be a (commute) or (app) redex. By Lemmas 4.6 and 4.7, and

the uniqueness of evaluation contexts in the network language,

q
Ep [Δ]

y
p = E[JΔKp] with

JΔKp = sendq 𝑐 . Hence Δ can only be comp,q 𝑐@p. And by Lemma 3.5, Ep must also be a

choreographic evaluation context at q; let us rename Ep to Ep,q. In summary, we have the

following diagram:

Ep,q [comp,q 𝑐@p] Ep,q [𝑐@q]

p
[
E[sendq 𝑐]

]
| q

[
E′ [recvp ⊥]

]
| N ′ N2 p

[q
Ep,q [𝑐@q]

y
p

]
| q

[
E′ [𝑐]

]
| N ′comp,q 𝑐 𝜏

comp,q 𝑐

In fact, this diagram is identical to the one we drew for the Completeness proof. Having

established the correspondence between Ep,q and E, E′
, the rest of the proof proceeds the

same as it did then. The case for selections is similar.

• Assume 𝜇 = 𝜏 and the step proceeds by reducing a (p-app) redex at p. Then we must

have J𝑀1Kp = E[(𝜆𝑥 : 𝑆 . 𝑃) 𝐿]. By Lemmas 3.4, 4.6 and 4.7, there exist Ep,𝑇 , 𝑀,𝑉 such that

𝑀1 = Ep [let 𝑥 : 𝑇 = 𝑉 in 𝑀 ′
1
]. Letting𝑀2 = Ep [𝑀 ′

1
[𝑥 := 𝑉]], the rest of the proof proceeds

the same as the Completeness proof.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

Relax! The Semilenient Core of Choreographic Programming (Extended Version) 269:21

• Assume 𝜇 = 𝜏 and the step proceeds by reducing a (p-if) redex at p. Then we must have

J𝑀1Kp = E[if 𝑐 then 𝑃true else 𝑃false]. Without loss of generality, let 𝑐 = true. By the argu-

ments as above, there exist Ep, 𝑀true, 𝑀false such that𝑀1 = Ep [if true then 𝑀true else 𝑀false].
This case now reduces to the same argument from the Completeness proof.

• Assume 𝜇 = 𝜏 and the step proceeds by reducing a (p-def) redex at p. This case proceeds by
the same arguments as above.

□

Theorem 4.12. The relation N⇝⇝ J𝑀K is a weak bisimulation.

Proof. (Completeness) Assume N1 ⇝⇝ J𝑀1K and𝑀1

𝜇
−→ 𝑀2. If𝑀1

𝜏−→ 𝑀2 by (app) or (commute),
then J𝑀1K ⇝⇝ J𝑀2K by Lemma 4.8; letting N1 = N2, we trivially have N1

𝜏
↠ N2 and N2 ⇝⇝ J𝑀2K.

Otherwise, by the Projection Theorem there exists N ′
2
such that J𝑀1K

𝜇
−→ N ′

2
⇝⇝ J𝑀2K. By the

Prophecy Theorem, there exists N2 such that N1

𝜏
↠

𝜇
−→ N2 and N2 ⇝⇝ N ′

2
. Hence N1

𝜏
↠

𝜇
−→ 𝜏
↠ N2

and N2 ⇝⇝ J𝑀2K.
(Soundness) Assume N1 ⇝⇝ J𝑀1K and N1

𝜇
−→ N2. By the Prophecy Theorem, there are two

cases. In the first case, 𝜇 = 𝜏 and N2 ⇝⇝ J𝑀1K; letting 𝑀1 = 𝑀2, we trivially have 𝑀1

𝜏
↠ 𝑀2 and

N2 ⇝⇝ J𝑀2K. In the second case, there exists N ′
2
such that N2 ⇝⇝ N ′

2
and J𝑀1K

𝜇
−→ N ′

2
. By the

Projection Theorem, there exists𝑀2 such that𝑀1

𝜏
↠

𝜇
−→ 𝑀2 andN ′

2
⇝⇝ J𝑀2K. Hence𝑀1

𝜏
↠

𝜇
−→ 𝜏
↠ 𝑀2

and N2 ⇝⇝ J𝑀2K. □

With the prophecy relation, we eliminated the need for restructuring rules at the network level

and made it convenient to prove the Projection Theorem by case analysis on evaluation contexts.

Experts in choreographic programming will know that proving the Projection Theorem typically

requires a large and tedious induction proof with many similar cases; our proof technique reduces

the burden to just a few diagrams with no need for induction. We conclude with a victory lap:

proving deadlock-freedom by design.

Theorem 4.13 (Deadlock-Freedom). Let𝑀0 be a choreography with pn(𝑀0) = {p1, . . . , p𝑛}. If
J𝑀0K evaluates to a network N that cannot be evaluated any further, then N = p1

[
𝐿1
]
| . . . | pn

[
𝐿𝑛

]
where 𝐿1, . . . , 𝐿𝑛 are all values.

Proof. By Theorem 4.12, 𝑀0 evaluates to some 𝑀 such that N⇝⇝ J𝑀K. Let �̃� be the normal

form of 𝑀 , so that 𝑀
𝜏
↠ �̃�; by Lemma 4.8, J𝑀K ⇝⇝

q
�̃�

y
and therefore N ⇝⇝

q
�̃�

y
. Notice �̃�

cannot be evaluated any further: by the Projection Theorem, another step �̃�
𝜇−→ 𝑀 ′

would implyq
�̃�

y 𝜇−→⇝⇝ J𝑀 ′K, and so the Prophecy Theorem would imply N 𝜏
↠

𝜇−→ ˜N ′
for some

˜N ′
. Since

�̃� cannot be evaluated further, Theorem 3.6 implies �̃� is a choreographic value 𝑉. Hence, by

Lemma 4.1,

q
�̃�

y
pi
is a value 𝐿𝑖 for each p𝑖 ∈ pn(𝑀). Finally, by inspecting the definition of (⇝),

N⇝⇝
q
�̃�

y
is only possible if N =

q
�̃�

y
. □

5 Related Work
Higher-Order Choreographies. Higher-order choreographic programming was introduced by the

Choral programming language [Giallorenzo et al. 2020, 2024]. Choral is also the language that

introduced the idea of modeling choreographic data structures and communication by extending

mainstream data types with locations and then having functions that input and output data at

different locations. The theoretical foundations of this idea have been investigated in Chor𝜆 [Cruz-

Filipe et al. 2022; Cruz-Filipe et al. 2023] and Pirouette [Hirsch and Garg 2022]. However, as we

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

269:22 Dan Plyukhin, Xueying Qin, and Fabrizio Montesi

explained in Section 1, these models sacrifice either adequacy or elegance; 𝜆𝜒 addresses both. Note

that, although 𝜆𝜒 is based on Chor𝜆, in principle we could develop the same results with Pirouette

by changing its evaluation strategy.

Multiparty session types support “nested protocols”, which can be seen as a form of higher-

order composition for simple choreographies without computation [Demangeon and Honda 2012].

Differently from most higher-order choreographic programming languages and our approach,

where code is fully concurrent via out-of-order execution, nested multiparty session types require

fixing a role that acts as an orchestrator to direct when a sub-choreography is entered.

Other Models. Choreographies in our model have two slightly unusual features: explicit let-

bindings and a special (commute) rule. Both features have a long history in past work.

Many readers will be familiar with Moggi’s computational 𝜆-calculus, where let-bindings express

the sequencing of effects [Moggi 1991]. But explicit let-bindings also arise when embedding 𝜆-calculi

into proof nets, where (𝜆𝑥.𝑀) 𝑁 ↦→ let 𝑥 = 𝑁 in 𝑀 and let 𝑥 = 𝑉 in 𝑀 ↦→ 𝑀 [𝑥 := 𝑉] correspond
to multiplicative and exponential cut-elimination, respectively [Accattoli 2015]. Ariola et al. [1995]

[1989] also used let-bindings to model sharing in non-strict calculi, similarly to our model.

Most of the models above also require restructuring rules, like those in Figure 8. For instance,

our (let-let) rule corresponds to monad associativity [Moggi 1991]; our (let-app) rule is needed for

sharing in call-by-need [Ariola et al. 1995]; our (let-app) and (app-let) rules are needed to internally
characterize solvability and achieve other good properties in call-by-value [Carraro and Guerrieri

2014; Herbelin and Zimmermann 2009]; and similar rules arise when embedding call-by-name terms

into proof nets [Régnier 1994]. Maurer et al. [2017] observed that all the rules above can be neatly

summarized by a single axiom, which pushes frames inside answering contexts. In choreographic

models like 𝜆𝜒 and Chor𝜆, the (commute) rule ensures soundness, i.e., choreographies can exhibit

all the same behaviors as their projections.

Distributed Data Types. The full version of Chor𝜆 includes constructors for distributed products

and sums—we omitted these constructors in pursuit of a simple model. As usual, one can partially

recover these constructors with lambda encodings. Consider the standard encodings for products

and sums, augmented with extra process annotations:

Pair ≡ 𝜆𝑥1 : 𝑇1 . 𝜆𝑥2 : 𝑇2 . 𝜆𝑝 : 𝑇1 → 𝑇2 →p 𝑇 . 𝑝 𝑥1 𝑥2

fst ≡ 𝜆𝑥1 : 𝑇1 . 𝜆𝑥2 : 𝑇2 . 𝑥1

snd ≡ 𝜆𝑥1 : 𝑇1 . 𝜆𝑥2 : 𝑇2 . 𝑥2

Inl ≡ 𝜆𝑥 : 𝑇1. 𝜆𝑙 : 𝑇1 →p 𝑇 . 𝜆𝑟 : 𝑇2 →q 𝑇 . 𝑙 𝑥

Inr ≡ 𝜆𝑥 : 𝑇2. 𝜆𝑙 : 𝑇1 →p 𝑇 . 𝜆𝑟 : 𝑇2 →q 𝑇 . 𝑟 𝑥

case ≡ 𝜆𝑠 : (𝑇1 →p 𝑇) → (𝑇2 →q 𝑇) →p∪q 𝑇 . 𝜆𝑙 : 𝑇1 →p 𝑇 . 𝜆𝑟 : 𝑇2 →q 𝑇 . 𝑠 𝑙 𝑟

The principal limitation of this encoding is that the term constructing the datatype must dictate

in advance what the type 𝑇 of the handler will be. In 𝜆𝜒 , this also means fixing a location for the

type 𝑇 and a set of proxy processes p involved in computing 𝑇 . We can loosen these restrictions

by adding explicit support for ADTs, as in Chor𝜆, or by adding process polymorphism, as in

PolyChor𝜆 [Graversen et al. 2024].

Selections. HasChor [Shen et al. 2023] is a library for choreographic programming in Haskell.

In HasChor, if-expressions and selections are merged into a single construct. When one writes

if 𝑓 (p) then 𝑀1 else 𝑀2, process p implicitly sends a selection to every other process in the

choreography—including processes not involved in𝑀1 or𝑀2. Choreographic conclaves [Bates et al.

2025] improve on this mechanism, ensuring only processes involved in the branches will receive a

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

Relax! The Semilenient Core of Choreographic Programming (Extended Version) 269:23

selection. These approaches are useful in library-level choreographic programming, where it is

difficult to statically check knowledge of choice.

However, explicit selections are more common in choreographic programming because they

offer more control. For instance, in 𝜆𝜒 we may write:

if 𝑓 (p)
then selectp,q 𝐿1 𝑀1

else ©­«
if 𝑔(p)
then selectp,q 𝐿2 𝑀2

else selectp,q 𝐿3 𝑀3

ª®¬
which projects to the following process at q:

&q{𝐿1 : J𝑀1Kq, 𝐿2 : J𝑀2Kq, 𝐿3 : J𝑀3Kq}

This term only requires one selection from p to q, whereas in HasChor it would require two

selections—one for each if-expression. There has been significant work onmaking explicit selections

even more powerful: [Lugovic and Montesi 2024] combines selections and communications into

a single “type-driven communication”; [Cruz-Filipe et al. 2023b] coalesces all the selections of a

loop into one message; and [Cruz-Filipe and Montesi 2023] develops an algorithm for inferring

selections in first-order choreographies.

Evaluation Under Conditionals. One rule of Chor𝜆 we decided not to capture is InCase, which
permits execution underneath an if-expression. This rule is also present in Montesi’s textbook on

choreographic programming, under the name DelayCond [Montesi 2023]. The inclusion of InCase
is typically justified by a choreography like the following:

if 𝑐@p then comp,q 0@p else comp,q 1@p,

This choreography is not projectable in 𝜆𝜒 , but it is projectable in Chor𝜆 and can be implemented

by the network p
[
if 𝑐 then sendq 0 else sendq 1

]
| q

[
recvp ⊥

]
. However, in simple examples like

these we can make the choreography projectable in 𝜆𝜒 by “pulling out” the communication:

comp,q (if 𝑐@p then 0@p else 1@p)

The future of the InCase rule is unclear. Library-level choreographic programming languages

omit the rule because it would be difficult to encode in the host language [Bates et al. 2025;

Shen et al. 2023]; recent work in fully out-of-order choreographies
2
is incompatible with the rule

as it is currently understood [Plyukhin et al. 2024]; and recent extensions like multiply-located

values [Bates et al. 2025] could further increase the expressiveness of 𝜆𝜒 without requiring InCase.

6 Conclusion
We have presented 𝜆𝜒 , an elegant model for higher-order choreographic programming based on the

𝜆-calculus. In particular, the model shows deep connections between choreographies and non-strict

𝜆-calculi, culminating in a new evaluation strategy we call semilenient evaluation. We hope this

work has made higher-order choreographies more accessible, particularly for experts from other

fields. We conclude by discussing applications of 𝜆𝜒 and opportunities for future work.

2
In our terminology, “fully” out-of-order execution means giving choreographies a lenient semantics instead of semilenient.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

269:24 Dan Plyukhin, Xueying Qin, and Fabrizio Montesi

Implementing EPP and source-level reasoning. To implement a higher-order choreographic language,

compiler authors need to choose a projection function. If they use projection à la Pirouette, the
language will have an ordinary call-by-value semantics—but only if processes synchronize globally

when they enter choreographic procedures. The compiler author could choose to omit these

synchronizations, but then the semantics is unknown: users will have no way to predict their

programs’ behavior except by inspecting the compiled endpoint code. To generate efficient code

and retain a connection to some formal model, the compiler author could instead use projection à
la Chor𝜆. But this is not much better, because users need to understand all Chor𝜆’s unusual rules

and edge cases before they can understand their programs.

Our model simplifies Chor𝜆, revealing that its evaluation strategy is straightforward after all: it is

just semilenient, instead of the usual call-by-value. This means compiler authors can omit needless

global synchronizations guilt-free, and compiler users can reason about their programs using

our simplified model. Compiler authors could also use our model to develop choreography-level

optimizations, like eliminating unnecessary communications, without changing the behavior of

the user’s program.

Compiler testing. How do we know the code generated by a choreographic compiler is correct? Our

Projection Theorem tells us what programmers should be able to expect: if𝑀 is a choreography

that reduces to value𝑉 and the compiler is correct, then the code generated by the compiler should

evaluate to J𝑉 Kp at each role p. Moreover, the order of communications we observe in the compiled

code should correspond to some execution of𝑀 in the choreography semantics. This is a standard

result that we can do with any choreography model.

But the principled design of our model also suggests syntax-directed ways to test a choreographic

compiler. For example, we can test that Lemma 4.4 holds: answering contexts at p should disappear

in the projection at p. We can also test Lemma 4.5: frames are projected into frames. If these

properties hold, it suggests the compiler does not introduce any unintentional synchronization

that would hurt performance.

A principled foundation for new languages. Choreographic programming is a very active field of

study. Researchers and hobbyists alike are developing choreographic languages with novel features;

these features are implemented by starting from an existing model, adding syntax, updating the

type system, and implementing projection. But how can we gain confidence that the resulting

language retains important properties like deadlock-freedom and type-safety? With prior work,

we could only gain this confidence by first formalizing a new semantics ex nihilo and proving the

projection theorem. Doing this is tedious and error-prone for researchers, and out of the question

for working programmers.

Our model gives compiler authors design principles for new choreographic languages. We have

argued already why we expect the semantics to be semilenient. We have also shown that semilenient

semantics emerges naturally from the definition of answering contexts and choreographic frames.

These two constructs have formal properties that are easy to check, c.f. Lemmas 4.4 and 4.5.

Thus, language designers can already start to have confidence in new features by identifying

appropriate generalizations of answering contexts and choreographic frames, and then checking

that their projection algorithm satisfies those properties. Eventually, given the similarity of existing

choreographic languages to one another, researchers may develop tools that automate the tedious

proofs of properties like deadlock-freedom and the projection theorem.

Future work. We argued indirectly why 𝜆𝜒 is a good foundation, but the proof is in the pudding. How

well does our approach play with orthogonal extensions, like process polymorphism [Graversen

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

Relax! The Semilenient Core of Choreographic Programming (Extended Version) 269:25

et al. 2024], census polymorphism and multiply-located values [Bates et al. 2025], and fully out-of-

order execution [Plyukhin et al. 2024]? Is the machinery we introduced sufficient for more complex

models, and can it guide researchers toward the “right” abstractions?

Reducing proof burden is another important topic for future work. Although our approach

makes proofs more “modular”, one can still easily make mistakes. Perhaps the building blocks we

introduced here could be factored into reusable proofs or tactics in proof assistants like Rocq or

Lean.

Acknowledgments
Partially supported by Villum Fonden (grant no. 29518). Co-funded by the European Union (ERC,

CHORDS, 101124225). Views and opinions expressed are however those of the authors only and do

not necessarily reflect those of the European Union or the European Research Council. Neither the

European Union nor the granting authority can be held responsible for them.

References
2025. Chorex: Choreographic Programming in Elixir. https://github.com/utahplt/chorex.

2025. Klor: Choreographies in Clojure. https://github.com/lovrosdu/klor.

Martín Abadi and Leslie Lamport. 1991. The Existence of Refinement Mappings. Theor. Comput. Sci. 82, 2 (1991), 253–284.
doi:10.1016/0304-3975(91)90224-P

Cosku Acay, Rolph Recto, Joshua Gancher, Andrew C. Myers, and Elaine Shi. 2021. Viaduct: an extensible, optimizing

compiler for secure distributed programs. In PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, Virtual Event, Canada, June 20-25, 2021, Stephen N. Freund and Eran Yahav (Eds.).

ACM, 740–755. doi:10.1145/3453483.3454074

Beniamino Accattoli. 2015. Proof Nets and the Call-by-Value Lambda-Calculus. Theor. Comput. Sci. 606 (2015), 2–24.

doi:10.1016/J.TCS.2015.08.006

Zena Ariola and Arvind. 1989. P-TAC: A Parallel Intermediate Language. In Proceedings of the Fourth International Conference
on Functional Programming Languages and Computer Architecture - FPCA ’89. ACM Press, Imperial College, London,

United Kingdom, 230–242. doi:10.1145/99370.99388

Zena M. Ariola, John Maraist, Martin Odersky, Matthias Felleisen, and Philip Wadler. 1995. A Call-by-Need Lambda Calculus.

In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages - POPL ’95. ACM
Press, San Francisco, California, United States, 233–246. doi:10.1145/199448.199507

Arvind, Jan-Willem Maessen, Rishiyur S. Nikhil, and Joseph Stoy. 1996. A Lambda Calculus with Letrecs and Barriers.

In Foundations of Software Technology and Theoretical Computer Science, Gerhard Goos, Juris Hartmanis, Jan Leeuwen,

V. Chandru, and V. Vinay (Eds.). Vol. 1180. Springer Berlin Heidelberg, Berlin, Heidelberg, 19–36. doi:10.1007/3-540-

62034-6_34

Arvind, Rishiyur S. Nikhil, and Keshav Pingali. 1986. I-Structures: Data Structures for Parallel Computing. In Graph
Reduction, Proceedings of a Workshop, Santa Fé, New Mexico, USA, September 29 - October 1, 1986 (Lecture Notes in Computer
Science, Vol. 279), Joseph H. Fasel and Robert M. Keller (Eds.). Springer, 336–369. doi:10.1007/3-540-18420-1_65

Lennart Augustsson, Joachim Breitner, Koen Claessen, Ranjit Jhala, Simon Peyton Jones, Olin Shivers, Guy L. Steele Jr., and

Tim Sweeney. 2023. The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming. Proc. ACM
Program. Lang. 7, ICFP (2023), 417–447. doi:10.1145/3607845

Hendrik Pieter Barendregt. 1984. The Lambda Calculus: Its Syntax and Semantics (rev. ed ed.). Number v. 103 in Studies in

Logic and the Foundations of Mathematics. North-Holland Sole distributors for the U.S.A. and Canada, Elsevier Science

Pub. Co, Amsterdam New York New York, N.Y.

Mako Bates, Shun Kashiwa, Syed Jafri, Gan Shen, Lindsey Kuper, and Joseph P. Near. 2025. Efficient, Portable, Census-

Polymorphic Choreographic Programming. In PLDI ’25: 46th ACM SIGPLAN International Conference on Programming
Language Design and Implementation. ACM, Seoul, South Korea. doi:10.1145/3729296

Marco Carbone and Fabrizio Montesi. 2013. Deadlock-freedom-by-design: multiparty asynchronous global programming.

In The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’13, Rome, Italy -
January 23 - 25, 2013, Roberto Giacobazzi and Radhia Cousot (Eds.). ACM, 263–274. doi:10.1145/2429069.2429101

Marco Carbone, Fabrizio Montesi, and Carsten Schürmann. 2018. Choreographies, logically. Distributed Comput. 31, 1
(2018), 51–67. doi:10.1007/S00446-017-0295-1

Alberto Carraro and Giulio Guerrieri. 2014. A Semantical and Operational Account of Call-by-Value Solvability. In

Foundations of Software Science and Computation Structures - 17th International Conference, FOSSACS 2014, Held as Part of

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

https://github.com/utahplt/chorex
https://github.com/lovrosdu/klor
https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.1145/3453483.3454074
https://doi.org/10.1016/J.TCS.2015.08.006
https://doi.org/10.1145/99370.99388
https://doi.org/10.1145/199448.199507
https://doi.org/10.1007/3-540-62034-6_34
https://doi.org/10.1007/3-540-62034-6_34
https://doi.org/10.1007/3-540-18420-1_65
https://doi.org/10.1145/3607845
https://doi.org/10.1145/3729296
https://doi.org/10.1145/2429069.2429101
https://doi.org/10.1007/S00446-017-0295-1

269:26 Dan Plyukhin, Xueying Qin, and Fabrizio Montesi

the European Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings
(Lecture Notes in Computer Science, Vol. 8412), Anca Muscholl (Ed.). Springer, 103–118. doi:10.1007/978-3-642-54830-7_7

Luís Cruz-Filipe, Eva Graversen, Lovro Lugovic, Fabrizio Montesi, and Marco Peressotti. 2022. Functional Choreographic

Programming. In Theoretical Aspects of Computing - ICTAC 2022 - 19th International Colloquium, Tbilisi, Georgia, September
27-29, 2022, Proceedings (Lecture Notes in Computer Science, Vol. 13572), Helmut Seidl, Zhiming Liu, and Corina S. Pasareanu

(Eds.). Springer, 212–237. doi:10.1007/978-3-031-17715-6_15

Luís Cruz-Filipe, Eva Graversen, Lovro Lugović, Fabrizio Montesi, and Marco Peressotti. 2023. Modular Compilation for

Higher-Order Functional Choreographies. In 37th European Conference on Object-Oriented Programming, ECOOP 2023,
July 17-21, 2023, Seattle, Washington, United States (LIPIcs, Vol. 263), Karim Ali and Guido Salvaneschi (Eds.). Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 7:1–7:37. doi:10.4230/LIPICS.ECOOP.2023.7

Luís Cruz-Filipe, Eva Graversen, Fabrizio Montesi, and Marco Peressotti. 2023a. Reasoning About Choreographic Programs.

In Coordination Models and Languages - 25th IFIP WG 6.1 International Conference, COORDINATION 2023, Held as Part of
the 18th International Federated Conference on Distributed Computing Techniques, DisCoTec 2023, Lisbon, Portugal, June
19-23, 2023, Proceedings (Lecture Notes in Computer Science, Vol. 13908), Sung-Shik Jongmans and Antónia Lopes (Eds.).

Springer, 144–162. doi:10.1007/978-3-031-35361-1_8

Luís Cruz-Filipe and Fabrizio Montesi. 2020. A Core Model for Choreographic Programming. Theor. Comput. Sci. 802 (2020),
38–66. doi:10.1016/J.TCS.2019.07.005

Luís Cruz-Filipe and Fabrizio Montesi. 2023. Now It Compiles! Certified Automatic Repair of Uncompilable Protocols. In

14th International Conference on Interactive Theorem Proving, ITP 2023, July 31 to August 4, 2023, Białystok, Poland (LIPIcs,
Vol. 268), Adam Naumowicz and René Thiemann (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 11:1–11:19.

doi:10.4230/LIPICS.ITP.2023.11

Luís Cruz-Filipe, Fabrizio Montesi, and Robert R. Rasmussen. 2023b. Keep me out of the loop: a more flexible choreographic

projection. In LPAR 2023: Proceedings of 24th International Conference on Logic for Programming, Artificial Intelligence and
Reasoning, Manizales, Colombia, 4-9th June 2023 (EPiC Series in Computing, Vol. 94), Ruzica Piskac and Andrei Voronkov

(Eds.). EasyChair, 144–163. doi:10.29007/WBW3

Romain Demangeon and Kohei Honda. 2012. Nested Protocols in Session Types. In CONCUR 2012 - Concurrency Theory -
23rd International Conference, CONCUR 2012, Newcastle upon Tyne, UK, September 4-7, 2012. Proceedings (Lecture Notes in
Computer Science, Vol. 7454), Maciej Koutny and Irek Ulidowski (Eds.). Springer, 272–286. doi:10.1007/978-3-642-32940-

1_20

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. 1993. The Essence of Compiling with Continuations.

ACM SIGPLAN Notices 28, 6 (June 1993), 237–247. doi:10.1145/173262.155113
Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti. 2020. Choreographies as Objects. CoRR abs/2005.09520 (2020).

arXiv:2005.09520 https://arxiv.org/abs/2005.09520

Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti. 2024. Choral: Object-oriented Choreographic Programming.

ACM Trans. Program. Lang. Syst. 46, 1 (2024), 1:1–1:59. doi:10.1145/3632398
Eva Graversen, Andrew K. Hirsch, and Fabrizio Montesi. 2024. Alice or Bob?: Process Polymorphism in Choreographies.

Journal of Functional Programming 34 (Jan. 2024). doi:10.1017/S0956796823000114

Hugo Herbelin and Stéphane Zimmermann. 2009. An Operational Account of Call-by-Value Minimal and Classical Lambda-

Calculus in "Natural Deduction" Form. In Typed Lambda Calculi and Applications, 9th International Conference, TLCA
2009, Brasilia, Brazil, July 1-3, 2009. Proceedings (Lecture Notes in Computer Science, Vol. 5608), Pierre-Louis Curien (Ed.).

Springer, 142–156. doi:10.1007/978-3-642-02273-9_12

Andrew K. Hirsch and Deepak Garg. 2022. Pirouette: higher-order typed functional choreographies. Proc. ACM Program.
Lang. 6, POPL (2022), 1–27. doi:10.1145/3498684

Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2016. Multiparty Asynchronous Session Types. J. ACM 63, 1 (2016),

9:1–9:67. doi:10.1145/2827695

Gérard Huet. 1997. The Zipper. Journal of Functional Programming 7, 5 (1997), 549–554. doi:10.1017/S0956796897002864

Shadaj Laddad, Alvin Cheung, and Joseph M. Hellerstein. 2024. Suki: Choreographed Distributed Dataflow in Rust.

arXiv:2406.14733 [cs]

Lovro Lugovic and Fabrizio Montesi. 2024. Real-World Choreographic Programming: Full-Duplex Asynchrony and Interop-

erability. Art Sci. Eng. Program. 8, 2 (2024). doi:10.22152/PROGRAMMING-JOURNAL.ORG/2024/8/8

Luke Maurer, Paul Downen, Zena M. Ariola, and Simon L. Peyton Jones. 2017. Compiling without Continuations. In

Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2017,
Barcelona, Spain, June 18-23, 2017, Albert Cohen and Martin T. Vechev (Eds.). ACM, 482–494. doi:10.1145/3062341.3062380

Eugenio Moggi. 1991. Notions of Computation and Monads. Information and Computation 93, 1 (July 1991), 55–92.

doi:10.1016/0890-5401(91)90052-4

Fabrizio Montesi. 2013. Choreographic Programming. Ph.D. Thesis. IT University of Copenhagen. https://www.

fabriziomontesi.com/files/choreographic-programming.pdf.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

https://doi.org/10.1007/978-3-642-54830-7_7
https://doi.org/10.1007/978-3-031-17715-6_15
https://doi.org/10.4230/LIPICS.ECOOP.2023.7
https://doi.org/10.1007/978-3-031-35361-1_8
https://doi.org/10.1016/J.TCS.2019.07.005
https://doi.org/10.4230/LIPICS.ITP.2023.11
https://doi.org/10.29007/WBW3
https://doi.org/10.1007/978-3-642-32940-1_20
https://doi.org/10.1007/978-3-642-32940-1_20
https://doi.org/10.1145/173262.155113
https://arxiv.org/abs/2005.09520
https://arxiv.org/abs/2005.09520
https://doi.org/10.1145/3632398
https://doi.org/10.1017/S0956796823000114
https://doi.org/10.1007/978-3-642-02273-9_12
https://doi.org/10.1145/3498684
https://doi.org/10.1145/2827695
https://doi.org/10.1017/S0956796897002864
https://arxiv.org/abs/2406.14733
https://doi.org/10.22152/PROGRAMMING-JOURNAL.ORG/2024/8/8
https://doi.org/10.1145/3062341.3062380
https://doi.org/10.1016/0890-5401(91)90052-4
https://www.fabriziomontesi.com/files/choreographic-programming.pdf
https://www.fabriziomontesi.com/files/choreographic-programming.pdf

Relax! The Semilenient Core of Choreographic Programming (Extended Version) 269:27

Fabrizio Montesi. 2023. Introduction to Choreographies. Cambridge University Press, Cambridge.

Roger M. Needham and Michael D. Schroeder. 1978. Using Encryption for Authentication in Large Networks of Computers.

Commun. ACM 21, 12 (1978), 993–999. doi:10.1145/359657.359659

Object Management Group. 2017. Unified Modeling Language, Version 2.5.1. https://www.omg.org/spec/UML/2.5.1/PDF.

Gordon D. Plotkin. 1975. Call-by-Name, Call-by-Value and the lambda-Calculus. Theor. Comput. Sci. 1, 2 (1975), 125–159.
doi:10.1016/0304-3975(75)90017-1

Dan Plyukhin, Marco Peressotti, and Fabrizio Montesi. 2024. Ozone: Fully Out-of-Order Choreographies. In 38th European
Conference on Object-Oriented Programming, ECOOP 2024, September 16-20, 2024, Vienna, Austria (LIPIcs, Vol. 313), Jonathan
Aldrich and Guido Salvaneschi (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 31:1–31:28. doi:10.4230/LIPICS.

ECOOP.2024.31

Laurent Régnier. 1994. Une Équivalence Sur Les Lambda-Termes. Theoretical Computer Science 126, 2 (April 1994), 281–292.
doi:10.1016/0304-3975(94)90012-4

Gan Shen, Shun Kashiwa, and Lindsey Kuper. 2023. HasChor: Functional Choreographic Programming for All (Functional

Pearl). Proc. ACM Program. Lang. 7, ICFP (2023), 541–565. doi:10.1145/3607849

Guy Tremblay. 2000. Lenient Evaluation Is Neither Strict nor Lazy. Comput. Lang. 26, 1 (2000), 43–66. doi:10.1016/S0096-
0551(01)00006-6

Petra van den Bos and Sung-Shik Jongmans. 2023. VeyMont: Parallelising Verified Programs Instead of Verifying Parallel

Programs. In Formal Methods - 25th International Symposium, FM 2023, Lübeck, Germany, March 6-10, 2023, Proceedings
(Lecture Notes in Computer Science, Vol. 14000), Marsha Chechik, Joost-Pieter Katoen, and Martin Leucker (Eds.). Springer,

321–339. doi:10.1007/978-3-031-27481-7_19

A Appendix
A.1 Properties of 𝜆𝜒

We begin by showing that any choreography can be put in normal form (c.f. Definition 3.1) using

only (commute) and (app) reductions. The key idea is to perform all possible (commute) reductions
first, then contract all available (app) redexes, and repeat the process until the choreography is in

normal form.

To show we can perform all possible (commute) reductions in finitely many steps, we need the

notion of an evaluation context that cannot be extended:

Definition A.1. Let𝑀 = Ep [𝑀 ′] for some p and some𝑀, Ep, 𝑀
′
. We say Ep is maximal if:

(1) there is no F , 𝑀 ′′
such that𝑀 ′ = F [𝑀 ′′]; and

(2) there is no A, 𝑀 ′′
such that𝑀 ′ = A[𝑀 ′′] and p ∉ pn(A).

Notice that for any𝑀 and p there exists a unique maximal evaluation context Ep.

Definition A.2. A choreography𝑀 is in commute-normal form for p if the maximal evaluation

context Ep has the form A∗ [F ∗] for some A∗, F ∗
. In other words, 𝑀 cannot be decomposed in

the form E′
p [Δ] where Δ is a (commute)-redex. We also say𝑀 is in commute-normal form for p if

𝑀 is in commute-normal form for each p ∈ p.

Next, the following lemma tells us that a choreography can be placed in commute-normal form

for any p using only (commute) reductions. If the choreography was already in commute-normal

form for some p, the reductions preserve that fact. Hence, we can perform all possible (commute)
reductions in𝑀 by picking a process p, putting𝑀 in commute-normal form for p, and then doing

the same for every other process in𝑀 .

Lemma A.3. Let p be a (possibly empty) list of processes and let q be a process where q ∉ p. Let𝑀
be a closed choreography in commute-normal form for p. Then there exists �̃� such that𝑀

𝜏
↠ �̃� only

using (commute) reductions, where �̃� is in commute-normal form for p and for q.

Proof. Let Eq be an evaluation context. We begin by proving that for any 𝑁 where Eq [𝑁] is in
commute-normal form for p, there exists ˜Eq such that: (1) Eq [𝑁] 𝜏

↠ ˜Eq [𝑁] using only (commute)

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

https://doi.org/10.1145/359657.359659
https://www.omg.org/spec/UML/2.5.1/PDF
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.4230/LIPICS.ECOOP.2024.31
https://doi.org/10.4230/LIPICS.ECOOP.2024.31
https://doi.org/10.1016/0304-3975(94)90012-4
https://doi.org/10.1145/3607849
https://doi.org/10.1016/S0096-0551(01)00006-6
https://doi.org/10.1016/S0096-0551(01)00006-6
https://doi.org/10.1007/978-3-031-27481-7_19

269:28 Dan Plyukhin, Xueying Qin, and Fabrizio Montesi

reductions; (2)
˜Eq [𝑁] is in commute-normal form for p; and (3)

˜Eq = A∗ [F ∗] for some A∗, F ∗

where q ∉ pn(A∗). We prove the result by induction on the structure of Eq.

(1) If Eq = • then ˜Eq = Eq.

(2) Let Eq = E′
q [F]. By the induction hypothesis, E′

q [F [𝑁]] 𝜏
↠ ˜E′

q [F [𝑁]] using only (commute)
reductions, where

˜E′
q = A∗ [F ∗] and q ∉ pn(A∗). Then ˜Eq = ˜E′

q [F].
(3) Let Eq = E′

q [A], where q ∉ pn(A). By the induction hypothesis, E′
q [A[𝑁]] 𝜏

↠ ˜E′
q [A[𝑁]]

using only (commute) reductions, where ˜E′
q = A∗ [F ∗] and q ∉ pn(A∗).

Observe
˜E′
q [A[𝑁]] 𝜏

↠ A∗ [A[F ∗ [𝑁]]] using only (commute) steps. Let ˜Eq = A∗ [A[F ∗]].
It remains only to show

˜Eq [𝑁] is in commute-normal form for each p ∈ p.
1. Assume p ∉ pn(A∗). Then A∗ [F ∗] is an evaluation context at p. Since we assumed

˜E′
q [A[𝑁]] was in commute-normal form for p, there are two possibilities for A:

a. A = selectr,s 𝑙 • where p ∈ {r, s}. Then ˜Eq [𝑁] = A∗ [selectr,s 𝑙 F ∗ [𝑁]], which is in

commute-normal form for p.
b. A = let 𝑥 : 𝑇 = 𝑀 ′ in • where p ∈ pn(𝑀 ′). Then ˜Eq [𝑁] = A∗ [let 𝑥 : 𝑇 =

𝑀 ′ in F ∗ [𝑁]], which is in commute-normal form for p.
2. Otherwise, p ∈ pn(A∗). There are two cases:

a. A∗ = A∗
1
[selectr,s 𝑙 A∗

2
] where p ∈ {r, s}. Then ˜Eq [𝑁] = A∗

1
[selectr,s 𝑙 A∗

2
[A[F ∗ [𝑁]]]]

is still in commute-normal form for p.
b. A∗ = A∗

1
[let 𝑥 : 𝑇 = 𝑀 ′ in A∗

2
] where p ∈ pn(𝑀 ′). Then ˜Eq [𝑁] is still in commute-

normal form for p.

Now, let Eq be the maximal evaluation context such that𝑀 = Eq [𝑁] for some 𝑁 . As we showed

above, there exists
˜Eq such that (1) Eq [𝑁] 𝜏

↠ ˜Eq [𝑁] using only (commute) reductions, (2) ˜Eq [𝑁] is
in commute-normal form for p, and (3)

˜Eq = A∗ [F ∗] for some A∗, F ∗
where q ∉ pn(A∗). Hence

˜Eq [𝑁] is in commute-normal form for p and q. □

We can now prove that every choreography has a normal form:

Lemma 3.2. For any closed choreography𝑀 , there exists �̃� in normal form where𝑀
𝜏
↠ �̃� using

only (commute) and (app) reductions.

Proof. Let p = pn(𝑀). Notice that contracting an (app) redex can cause new (commute) redexes
to appear, and vice versa. However, the number of (app) redexes is bounded above by the number of 𝜆-

abstractions that occur in𝑀 , and (commute) reductions do not change the number of 𝜆-abstractions

in the choreography. Hence we can put𝑀 in normal form by first putting it in commute-normal

form for p, then contracting all available (app) redexes, and repeating the process until no more

(app) redexes can be contracted. □

Lemma 3.4. Let𝑀 be a closed choreography with p ∈ pn(𝑀). Either:
(1) 𝑀 = Ep [Δ] for some evaluation context Ep where Δ is a redex at p, or
(2) 𝑀 = A∗ [𝑉] for some stack of answering contexts A∗ where p ∉ pn(A∗) and 𝑉 is a value.

Proof. By structural induction on𝑀 .

(1) Let𝑀 = 𝑉 for some value 𝑉. Then𝑀 = A[𝑉] where A = •.
(2) Let 𝑀 = 𝑓 (p). Notice p ∈ p because we assumed p ∈ pn(𝑀). Hence 𝑀 = Ep [Δ] where

Ep = • and Δ = 𝑀 .

(3) Let𝑀 = selectq,r 𝑙 𝑀 ′
.

1. If r ∈ {q, r} then𝑀 = Ep [Δ] where Ep = • and Δ = 𝑀 .

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

Relax! The Semilenient Core of Choreographic Programming (Extended Version) 269:29

2. Otherwise, r ∉ {q, r}. By the induction hypothesis for𝑀 ′
, there are two cases:

a. 𝑀 ′ = E′
p [Δ] for some E′

p,Δ. Then𝑀 = Ep [Δ] where Ep = A[E′
p] and A = selectq,r 𝑙 •.

b. 𝑀 ′ = A′∗ [𝑉] for some A∗,𝑉. Then𝑀 = A∗ [𝑉] where A∗ = selectq,r 𝑙 A′∗
.

(4) Let𝑀 = let 𝑥 : 𝑇 = 𝑀1 in 𝑀2.

1. Assume p ∉ pn(𝑀1). Let A = let 𝑥 : 𝑇 = 𝑀1 in •. By the induction hypothesis for 𝑀2,

there are two cases outlined below.

a. Assume𝑀2 = E′
p [Δ] for some E′

p,Δ. Then𝑀 = Ep [Δ] where Ep = A[E′
p].

b. Otherwise,𝑀2 = A∗ [𝑉] for some A∗,𝑉. Then𝑀 = A[A∗ [𝑉]].
2. Otherwise, by the induction hypothesis for𝑀1, there are three cases outlined below.

a. Assume 𝑀1 = E′
p [Δ] for some E′

p,Δ. Then 𝑀 = Ep [Δ] where Ep = F [E′
p] and F =

let 𝑥 : 𝑇 = • in 𝑀2.

b. Assume𝑀1 = 𝑉 for some 𝑉. Then𝑀 = Ep [Δ] where Ep = • and Δ = 𝑀 .

c. Otherwise,𝑀1 = A∗ [𝑉] for some A∗,𝑉 where A∗ ≠ •. Then for some A,A′∗
we have

A∗ = A[A′∗]. Hence 𝑀 = F [A[A′∗ [𝑉]]], where F = let 𝑥 : 𝑇 = • in 𝑀2; i.e., 𝑀 is a

redex for the (commute) rule. Hence𝑀 = Ep [Δ] where Ep = • and Δ = 𝑀 .

(5) Let𝑀 = 𝑀1 𝑀2. We show𝑀 = Ep [Δ] for some Ep,Δ by induction on the typing derivation

of𝑀1.

1. Case TAbs. Then𝑀 is a redex for (app).
2. Case TVar. Impossible, because𝑀1 is closed.

3. Case TIf, TDef. Impossible, because we assumed if-expressions and procedure calls are

let-bound or in tail position.

4. Case TSel, TLet. Then𝑀 = F [A[𝑀 ′]] is a redex for (commute), where𝑀1 = A[𝑀 ′] and
F = •𝑀2.

5. Case TConst. Impossible, because𝑀1 has function type.

6. Case TApp. By the induction hypothesis,𝑀1 = E′
p [Δ] for some E′

p,Δ. Then𝑀 = F [E′
p [Δ]]

where F = •𝑀2.

7. Case TCom. If 𝑀1 = comq,p for some q, then 𝑀 is a redex at p. Otherwise, 𝑀1 = comq,r
for some q, r and p ∈ pn(𝑀2). By the induction hypothesis for 𝑀2, there are three cases

outlined below.

a. Assume𝑀2 = E′
p [Δ] for some E′

p,Δ. Then𝑀 = Ep [Δ] where Ep = F [E′
p] and F = 𝑀1 •.

b. Assume𝑀2 is a value. Then𝑀 is a redex for (com).
c. Otherwise,𝑀2 = A∗ [𝑉] for some A∗,𝑉 where A∗ ≠ •. Then𝑀 is a redex for (commute).

(6) Let𝑀 = if 𝑀 ′ then 𝑀1 else 𝑀2.

1. Assume p ∉ pn(𝑀 ′). Then p ∈ pn(𝑀) implies p ∈ pn(𝑀1) ∪ pn(𝑀2). Hence𝑀 is a redex

for p.
2. Otherwise, p ∈ pn(𝑀 ′). By the induction hypothesis for𝑀 ′

, there are three cases:

a. Assume 𝑀 ′ = E′
p [Δ] for some E′

p,Δ. Then 𝑀 = Ep [Δ] where Ep = F [E′
p] and F =

if • then 𝑀1 else 𝑀2.

b. Assume 𝑀 ′
is a value. By inspecting the typing rules, 𝑀 ′

must be true@p or false@p.
Hence𝑀 is a redex for (if).

c. Otherwise,𝑀 ′ = A∗ [𝑉] for some A∗,𝑉 where A∗ ≠ •. Then𝑀 is a redex for (commute).

□

Lemma 3.5. Let𝑀 be a closed choreography in normal form and let p, q be processes that are not
necessarily distinct. Assume𝑀 = Ep [Δ1] = Eq [Δ2] for some evaluation contexts Ep, Eq where Δ1 and
Δ2 are redexes at both p and q. Then Ep = Eq and Δ1 = Δ2.

Proof. By induction on the structure of Ep. Notice it suffices to show Ep = Eq.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

269:30 Dan Plyukhin, Xueying Qin, and Fabrizio Montesi

(1) Assume Ep = •. By case analysis on redexes Δ1, the assumption that Δ1 is also a redex at q,
and the assumption that𝑀 is in normal form, we must have Eq = •.

(2) Assume Ep = F [E′
p].

1. Assume F = •𝑀 ′
. Proceed by case analysis on Eq.

a. Suppose Eq = •. Then𝑀 = Δ2, where Δ2 is not an (app) or (commute) redex because𝑀
is in normal form. By case analysis on choreographic redexes, this case is impossible

because E′
p [Δ1] cannot be a value.

b. Suppose Eq = 𝑉 E′
q for some E′

q. Again, E′
p [Δ1] cannot be a value.

c. Hence Eq = F [E′
q] for some E′

q. The result follows by the induction hypothesis.

2. Assume F = 𝑉 •.
a. Suppose Eq = •. Then𝑀 = Δ2, which is impossible because E′

p [Δ1] cannot be a value.
b. Suppose Eq = E′

q 𝑀
′
for some E′

q, 𝑀
′
. Impossible because E′

q [Δ2] cannot be a value 𝑉.
c. Hence Eq = F [E′

q] for some E′
q. The result follows by the induction hypothesis.

3. Assume F = if • then 𝑀1 else 𝑀2.

a. Suppose Eq = •. Then𝑀 = Δ2, which is impossible because E′
p [Δ1] cannot be a value.

b. Hence Eq = F [E′
q] for some E′

q. The result follows by the induction hypothesis.

4. Assume F = let 𝑥 : 𝑇 = • in 𝑀 ′
.

a. Suppose Eq = •. Then𝑀 = Δ2, which is impossible because E′
p [Δ1] cannot be a value.

b. Suppose Eq = let 𝑥 : 𝑇 = 𝑀 ′′ in E′
q for some 𝑀 ′′, E′

q where q ∉ pn(𝑀 ′′). Impossible,

because𝑀 ′′ = E′
p [Δ1] and Δ1 is a redex at q, so q ∈ pn(𝑀 ′′).

c. Hence Eq = F [E′
q] for some E′

q. The result follows by the induction hypothesis.

(3) Assume Ep = A[E′
p] where p ∉ pn(A).

1. Assume A = let 𝑥 : 𝑇 = 𝑀 ′ in • where p ∉ pn(𝑀 ′).
a. Suppose Eq = •. Then𝑀 = Δ2, which is impossible because E′

p [Δ1] cannot be a value.
b. Suppose Eq = let 𝑥 : 𝑇 = • in 𝑀 ′′

for some 𝑀 ′′, E′
q. Impossible, because 𝑀 ′ = E′

q [Δ2]
and Δ2 is a redex at p, implying p ∈ pn(𝑀 ′) after all.

c. Hence Eq = A[E′
q] for some E′

q. The result follows by the induction hypothesis.

2. Assume A = selectr,s 𝑙 • where p ∉ {r, s}.
a. Suppose q ∈ {r, s}. Impossible, because𝑀 = Δ2 and Δ2 is a redex at p, implying p ∈ {r, s}

after all.

b. Hence Eq = A[E′
q] for some E′

q. The result follows by the induction hypothesis.

□

Theorem 3.6 (Progress of evaluation). Let𝑀 be a choreography. If there exist Θ,𝑇 such that
Θ; ∅ ⊢ 𝑀 : 𝑇 , then either𝑀 is a value 𝑉 or there exists𝑀 ′ such that𝑀

𝜇−→ 𝑀 ′.

Proof. Shown by different cases of𝑀 .

(1) If𝑀 is a redex or a value, the result holds trivially.

(2) 𝑀 = 𝑓 (p). Then𝑀 is a redex for the (def) rule.
(3) 𝑀 = let 𝑥 : 𝑇1 = 𝑀1 in 𝑀2. If𝑀1 is a value, then𝑀 is a redex for the (let) rule. If𝑀1 is not a

value, then by the inversion of the rule TLet, we can obtain Θ; ∅ ⊢ 𝑀1 : 𝑇1. By the inductive

hypothesis, there exists 𝑀 ′
1
such that 𝑀1

𝜇−→ 𝑀 ′
1
. Then also 𝑀 = F [𝑀1]

𝜇−→ F [𝑀 ′
1
], where

F = let 𝑥 : 𝑇 1 = • in 𝑀2.

(4) 𝑀 = selectp,q 𝑙 𝑀1. Then𝑀 is a redex for the (select) rule.
(5) 𝑀 = 𝑀1 𝑀2.

1. 𝑀1 = 𝑉 is a value, and therefore 𝑀 = F [𝑀2] where F = 𝑉 •. By the inversion of the

rule TApp, we can obtain Θ; ∅ ⊢ 𝑉 : 𝑇1 →p 𝑇 , and Θ; ∅ ⊢ 𝑀1 : 𝑇1. Based on the typing

information of 𝑉, it can only take two different forms:

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

Relax! The Semilenient Core of Choreographic Programming (Extended Version) 269:31

a. 𝑉 = 𝜆𝑥 : 𝑇 .𝑀2, then𝑀 is a redex for the (app) rule.
b. 𝑉 = comp,q, then we have two cases:

(1) 𝑀2 = 𝑉 ′
is a value. Since Θ; ∅ ⊢ 𝑀2 : 𝑇1 and 𝑀 is closed, 𝑀2 can only be a constant

value. Then𝑀 is a redex for the (com) rule.
(2) 𝑀2 is not a value. By the inductive hypothesis, there exists 𝑀 ′

2
such that 𝑀2

𝜇−→ 𝑀 ′
2
.

Then also𝑀 = F [𝑀2]
𝜇−→ F [𝑀 ′

2
].

2. 𝑀1 is not a value, and therefore 𝑀 = F [𝑀1] where F = • 𝑀2. By the inversion of the

rule TApp, we have Θ; ∅ ⊢ 𝑀1 : 𝑇1 →p 𝑇 . Then by the inductive hypothesis, we can prove

this case.

(6) 𝑀 = if 𝑀1 then 𝑀2 else 𝑀3. By the inversion of the rule TIf, we have Θ; Γ ⊢ 𝑀1 : Bool@p,
Θ; Γ ⊢ 𝑀2 : 𝑇 , and Θ; Γ ⊢ 𝑀3 : 𝑇 .

1. 𝑀1 = 𝑉. Since Θ; Γ ⊢ 𝑀1 : Bool@p and𝑀 is closed,𝑀1 can only be a constant value. Then

𝑀 is a redex for the (if) rule.
2. 𝑀1 is not a value, and therefore 𝑀 = F [𝑀1] where F = if • then 𝑀2 else 𝑀3. Then by

the inductive hypothesis, we can prove this case.

□

Lemma A.4 (Variable substitution). Let 𝑀 be a term with a free variable 𝑥 , and suppose
Θ; Γ, 𝑥 : 𝑇2 ⊢ 𝑀 : 𝑇1. Also, let 𝑉 be a value with type 𝑇2. Then, we can substitute 𝑉 for all occurrences
of 𝑥 in𝑀 and obtain a new term that still has type 𝑇1, i.e., Θ; Γ ⊢ 𝑀 [𝑥 := 𝑉] : 𝑇1.

Proof. This lemma can be proven by structural induction on𝑀 . □

Lemma A.5 (Process name substitution). Let 𝑀 be a term such that Θ; Γ ⊢ 𝑀 : 𝑇 , then
Θ; Γ ⊢ 𝑀 [q := p] : 𝑇[q := p].

Proof. Similarly, this lemma can be proven by structural induction on𝑀 . □

Theorem A.6 (Preservation of reduction). Let𝑀 be a choreography. If there exist Θ, Γ,𝑇 such
that Θ; Γ ⊢ 𝑀 : 𝑇 , then Θ; Γ ⊢ 𝑀 ′

: 𝑇 for any𝑀 ′ such that𝑀
𝜇↦−−→ 𝑀 ′.

Proof. By induction on reduction rules.

(1) Case com. We can prove it by the inversion of the rule TCom.

(2) Case select. We can prove it by the inversion of the rule TSel.

(3) Case app. We can prove it by the inversion of the rule TApp, and then applying the rule TLet.

(4) Case let. In this case𝑀 ′ = 𝑀2 [𝑥 := 𝑉]. We can prove it by firstly applying the inversion of

the rule TLet, we have Θ; Γ ⊢ 𝑉 : 𝑇1 and Θ; Γ, 𝑥 : 𝑇1 ⊢ 𝑀2 : 𝑇2. Then by lemma A.4, we can

conclude that Θ; Γ ⊢ 𝑀2 [𝑥 := 𝑉] : 𝑇2 and prove this case.

(5) Case if. We can prove it by firstly applying the inversion of the rule TIf, we have Θ; Γ ⊢ 𝑀1 :

Bool@p, Θ; Γ ⊢ 𝑀2 : 𝑇 , and Θ; Γ ⊢ 𝑀3 : 𝑇 . If𝑀1 is evaluated to true, then we can prove this

case by having Θ; Γ ⊢ 𝑀2 : 𝑇 and𝑀 ′ = 𝑀2. If𝑀1 is evaluated to false, then we can prove this

case by having Θ; Γ ⊢ 𝑀3 : 𝑇 and𝑀 ′ = 𝑀3.

(6) Case def. In this case𝑀 ′ = 𝑀1 [q := p], where (𝑓 (q) : 𝑇1 = 𝑀1) ∈ D. We would like to show

Θ; Γ ⊢ 𝑀1 [q := p] : 𝑇 . We have two typing judgments Θ; Γ ⊢ 𝑀1 : 𝑇1 and Θ; Γ ⊢ 𝑓 (p) : 𝑇 . By
the rule TDef, we can obtain Θ; Γ ⊢ 𝑓 (p) : 𝑇1 [q := p]. Therefore we can conclude𝑇 = 𝑇1 [q :=

p]. Since Θ; Γ ⊢ 𝑀1 : 𝑇1, by lemma A.5, we can conclude that Θ; Γ ⊢ 𝑀1 [q := p] : 𝑇1 [q := p]
and prove this case.

(7) Case commute. We need to prove this rule case by case according to the eight cases shown in

Figure 8. For each case, we need to firstly apply the inversion of a typing rule to obtain the

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

269:32 Dan Plyukhin, Xueying Qin, and Fabrizio Montesi

typing information of all subterms, and reconstruct the typing information of rewritten by

the commute rule according the typing rules which are relevant to that specific case.

□

A.2 Basic Properties of Projection
Lemma A.7. Let𝑀 be a choreography.
(1) If𝑀 is a value, then pn(type(𝑀)) = pn(𝑀).
(2) If𝑀 is not a value, then pn(type(𝑀)) ⊆ pn(𝑀).

Proof. Proceed by induction on the typing derivations of𝑀 .

(1) Let𝑀 = selectq,r 𝑙 𝑀 ′
.

1. By the induction hypothesis, pn(type(𝑀 ′)) ⊆ pn(𝑀 ′).
2. By the definition of typing rules, type(𝑀) = type(𝑀 ′).
3. Hence pn(type(𝑀)) ⊆ pn(𝑀 ′) ∪ {q, r} = pn(𝑀).

(2) Let𝑀 = 𝑀1 𝑀2.

1. By the induction hypothesis, pn(type(𝑀1)) ⊆ pn(𝑀1) and pn(type(𝑀2)) ⊆ pn(𝑀2).
2. By the definition of typing rules, pn(type(𝑀)) ⊆ pn(type(𝑀1)) ∪ pn(type(𝑀2)).
3. Hence pn(type(𝑀)) ⊆ pn(𝑀1) ∪ pn(𝑀2) = pn(𝑀).

(3) Let𝑀 = if 𝑀 ′ then 𝑀1 else 𝑀2.

1. By the induction hypothesis, pn(type(𝑀 ′)) ⊆ pn(𝑀 ′) and pn(type(𝑀1)) ⊆ pn(𝑀1) and
pn(type(𝑀2)) ⊆ pn(𝑀2).

2. By the definition of typing rules, pn(type(𝑀)) ⊆ pn(type(𝑀1)) ∪ pn(type(𝑀2)).
3. Hence pn(type(𝑀)) ⊆ pn(𝑀1) ∪ pn(𝑀2) ⊆ pn(𝑀 ′) ∪ pn(𝑀1) ∪ pn(𝑀2) = pn(𝑀).

(4) In all other cases, the result follows by definition of pn(−).
□

Lemma 4.2. Let𝑀 be a choreography where p ∉ pn(𝑀). Then J𝑀Kp = ⊥.

Proof. Proceed by induction on the typing derivations of𝑀 .

(1) Let𝑀 = 𝑥 .

1. Assume p ∉ pn(𝑀).
a. By Lemma A.7 p ∉ pn(𝑀) implies p ∉ pn(type(𝑥)).
b. Therefore J𝑥Kp = ⊥.

2. Assume J𝑀Kp = ⊥.
a. By definition of projection, p ∉ pn(type(𝑥)).
b. By Lemma A.7, p ∉ pn(𝑀).

(2) Let𝑀 = selectq,r 𝑙 𝑀 ′
.

1. Assume p ∉ pn(𝑀).
a. Then p ∉ pn(𝑀) implies p ∉ {q, r} ∪ pn(𝑀 ′).
b. By the induction hypothesis, J𝑀 ′Kp = ⊥.
c. Hence J𝑀Kp = J𝑀 ′Kp = ⊥.

2. Assume J𝑀Kp = ⊥.
a. By definition of projection, p ∉ {q, r}.
b. By the induction hypothesis, p ∉ pn(𝑀 ′).
c. Hence p ∉ pn(𝑀).

(3) Let𝑀 = 𝜆𝑥 : 𝑇 .𝑀 ′
.

1. Assume p ∉ pn(𝑀).
a. By definition of pn(−), we have p ∉ pn(𝑇) ∪ pn(𝑀).

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

Relax! The Semilenient Core of Choreographic Programming (Extended Version) 269:33

b. By definition of projection J𝑀Kp = ⊥.
2. Assume J𝑀 ′Kp = ⊥.
a. By definition of projection, p ∉ pn(𝑇) ∪ pn(𝑀 ′).
b. By definition of pn(−), we have p ∉ pn(𝑀).

(4) Let𝑀 = 𝑀1 𝑀2.

1. Assume p ∉ pn(𝑀).
a. Then p ∉ pn(𝑀) implies p ∉ pn(𝑀1) and p ∉ pn(𝑀2).
b. By definition of projection, J𝑀Kp = ⊥.

2. Assume J𝑀Kp = ⊥.
a. By definition of projection, p ∉ pn(𝑀1) ∪ pn(𝑀2).
b. Hence p ∉ pn(𝑀).

(5) Let𝑀 = if 𝑀 ′ then 𝑀1 else 𝑀2.

1. Assume p ∉ pn(𝑀).
a. Then p ∉ pn(𝑀) implies p ∉ pn(𝑀 ′) ∪ pn(𝑀1) ∪ pn(𝑀2).
b. By Lemma A.7, p ∉ pn(type(𝑀 ′)).
c. By the induction hypothesis, J𝑀1Kp = J𝑀2Kp = ⊥.
d. By definition of projection, J𝑀Kp = J𝑀1Kp ⊔ J𝑀2Kp = ⊥ ⊔ ⊥ = ⊥.

2. Assume J𝑀Kp = ⊥.
a. By definition of projection and (⊔), p ∉ pn(𝑀 ′) and J𝑀1Kp = J𝑀2Kp = ⊥.
b. By the induction hypothesis, p ∉ pn(𝑀1) ∪ pn(𝑀2).
c. Hence p ∉ pn(𝑀).

(6) All other cases follow by definition of projection.

□

Lemma 4.3 (Modularity). A context 𝐶 is a choreography with a unique hole • in place of some
subexpression. Let 𝐶 be a context and𝑀1, 𝑀2 choreographies such that p ∉ pn(𝑀1) and p ∉ pn(𝑀2).
Then J𝐶 [𝑀1]Kp = J𝐶 [𝑀2]Kp.

Proof. By routine induction on the structure of contexts 𝐶; projection treats 𝑀1 and 𝑀2 the

same way.

(1) 𝐶 = •. Follows from Lemma 4.2.

(2) 𝐶 = 𝐶′ 𝑀 . If p ∈ pn(𝑀) then by the induction hypothesis J𝐶 [𝑀1]Kp = J𝐶′ [𝑀1]Kp J𝑀Kp =

J𝐶′ [𝑀2]Kp J𝑀Kp = J𝐶 [𝑀2]Kp. Otherwise J𝐶 [𝑀1]Kp = J𝐶 [𝑀2]Kp = ⊥.
(3) 𝐶 = 𝑀 𝐶′

. If p ∈ pn(𝑀) then by the induction hypothesis J𝐶 [𝑀1]Kp = J𝑀Kp J𝐶′ [𝑀1]Kp =

J𝑀Kp J𝐶′ [𝑀2]Kp = J𝐶 [𝑀2]Kp. Otherwise J𝐶 [𝑀1]Kp = J𝐶 [𝑀2]Kp = ⊥.
(4) 𝐶 = if 𝐶′ then 𝑀3 else 𝑀4.

1. Assume p ∈ type(𝐶′ [𝑀1]). Then p ∈ type(𝐶′ [𝑀2]). By the induction hypothesis,

Jif 𝐶′ [𝑀1] then 𝑀3 else 𝑀4Kp = if J𝐶′ [𝑀1]Kp then J𝑀3Kp else J𝑀4Kp =
if J𝐶′ [𝑀2]Kp then J𝑀3Kp else J𝑀4Kp = Jif 𝐶′ [𝑀2] then 𝑀3 else 𝑀4Kp.

2. Assume p ∈ pn(𝐶′ [𝑀1])\pn(type(𝐶′ [𝑀1])). Then p ∈ pn(𝐶′ [𝑀2])\pn(type(𝐶′ [𝑀2])). By
induction hypothesis, Jif 𝐶′ [𝑀1] then 𝑀3 else 𝑀4Kp = (𝜆𝑥 : ⊥.J𝑀3Kp ⊔ J𝑀4Kp) J𝐶′ [𝑀1]Kp =
(𝜆𝑥 : ⊥.J𝑀3Kp ⊔ J𝑀4Kp) J𝐶′ [𝑀2]Kp = Jif 𝐶′ [𝑀2] then 𝑀3 else 𝑀4Kp.

3. Otherwise, p ∉ 𝐶′
. Then p ∉ pn(𝐶′ [𝑀1]) and p ∉ pn(𝐶′ [𝑀2]). Hence J𝐶 [𝑀1]Kp = J𝑀3Kp ⊔

J𝑀4Kp = J𝐶 [𝑀2]Kp.
(5) 𝐶 = selectq,r 𝑙 𝐶′

.

1. Assume p = q. By the induction hypothesis, J𝐶 [𝑀1]Kp = ⊕r 𝑙 J𝐶′ [𝑀1]Kp = ⊕r 𝑙 J𝐶′ [𝑀2]Kp =
J𝐶 [𝑀2]Kp.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

269:34 Dan Plyukhin, Xueying Qin, and Fabrizio Montesi

2. Assume p = r. By the induction hypothesis,

J𝐶 [𝑀1]Kp = &r{𝑙 : J𝐶′ [𝑀1]Kp} = &r{𝑙 : J𝐶′ [𝑀2]Kp} = J𝐶 [𝑀2]Kp.
3. Assume p ∉ {q, r}. By the induction hypothesis,

J𝐶 [𝑀1]Kp = J𝐶′ [𝑀1]Kp = J𝐶′ [𝑀2]Kp = J𝐶 [𝑀2]Kp.
(6) 𝐶 = 𝜆𝑥 : 𝑇 .𝐶′

. By the induction hypothesis,

J𝐶 [𝑀1]Kp = 𝜆𝑥 : J𝑇 Kp .J𝐶
′ [𝑀1]Kp = 𝜆𝑥 : J𝑇 Kp.J𝐶

′ [𝑀2]Kp = J𝐶 [𝑀2]Kp.
□

Lemma 4.1. If 𝑉 is a choreographic value then J𝑉 Kp is a network-level value.

Proof. Immediate by induction on the structure of 𝑉. □

Lemma A.8. Let Γ;Θ ⊢ 𝑀 : 𝑇 and p ∈ Θ. Then 𝑥 ∈ fv(J𝑀Kp) if and only if 𝑥 ∈ fv(𝑀) and
p ∈ pn(𝑥).

Proof. By structural induction on𝑀 .

(1) 𝑀 = 𝑥 . Then J𝑀Kp = 𝑥 if p ∈ pn(𝑥) and J𝑀Kp = ⊥ otherwise.

(2) 𝑀 = 𝜆𝑥 : 𝑇 .𝑀 ′
.

1. By the induction hypothesis, 𝑦 ∈ fv(J𝑀 ′Kp) if and only if 𝑦 ∈ fv(𝑀 ′) and p ∈ pn(𝑦).
2. By definition of projection, J𝑀Kp = 𝜆𝑥 : J𝑇 Kp.J𝑀

′Kp. Hence

𝑦 ∈ fv(J𝑀Kp) ⇔ 𝑦 ∈ fv(J𝑀 ′Kp) ⇔ 𝑦 ∈ fv(𝑀 ′) ∧ p ∈ pn(𝑦) ⇔ 𝑦 ∈ fv(𝑀) ∧ p ∈ pn(𝑦).
(3) 𝑀 = let 𝑥 : 𝑇 = 𝑀1 in 𝑀2.

1. By the induction hypothesis, 𝑦 ∈ fv(J𝑀2Kp) if and only if 𝑦 ∈ fv(𝑀2) and p ∈ pn(𝑦).
2. Assume p ∈ pn(𝑀1). By definition of projection, J𝑀Kp = (𝜆𝑥 : J𝑇 Kp.J𝑀2Kp) J𝑀1Kp. Hence

𝑦 ∈ fv(J𝑀Kp) ⇔ 𝑦 ∈ fv(J𝑀2Kp) ⇔ 𝑦 ∈ fv(𝑀2) ∧ p ∈ pn(𝑦) ⇔ 𝑦 ∈ fv(𝑀) ∧ p ∈ pn(𝑦).
3. Otherwise, p ∉ pn(𝑀1).
a. Then p ∉ pn(𝑇) by Lemma A.7.

b. By definition of projection, J𝑀Kp = J𝑀2Kp.
c. Hence 𝑦 ∈ fv(J𝑀Kp) if and only if 𝑦 ∈ fv(𝑀) and p ∈ pn(𝑦).

(4) In all other cases, the result follows by routine induction.

□

Lemma A.9. Let Γ;Θ ⊢ let 𝑥 : 𝑇 = 𝑉 in 𝑀 : 𝑇 ′. For any p, J𝑀 [𝑥 := 𝑉]Kp = J𝑀Kp [𝑥 := J𝑉Kp].

Proof. By cases.

(1) Assume p ∉ pn(𝑉).
1. Then J𝑀 [𝑥 := 𝑉]Kp = J𝑀Kp by Lemma 4.3.

2. By Lemma A.7, p ∉ pn(𝑇).
3. By Lemma A.8, 𝑥 ∉ fv(J𝑀Kp).
4. Hence J𝑀Kp [𝑥 := J𝑉Kp] = J𝑀Kp.

(2) Otherwise, p ∈ pn(𝑉).
1. By Lemma A.7, p ∈ pn(𝑇). Hence p ∈ pn(𝑥).
2. The rest of the proof follows by routine induction on the structure of𝑀 .

□

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

Relax! The Semilenient Core of Choreographic Programming (Extended Version) 269:35

Lemma 4.4. Let A be an answering context.
(1) If r ∉ pn(A) then JA[𝑀]Kr = J𝑀Kr for any𝑀 .
(2) If r ∈ pn(A) then there exists B such that, for any𝑀 , JA[𝑀]Kr = B[J𝑀Kr].

Proof. By case analysis on A.

(1) Assume A = let 𝑥 : 𝑇 = 𝑀 ′ in •.
1. Assume r ∉ pn(A). By definition of pn(−), r ∉ pn(𝑀 ′). By definition of projection,

JA[𝑀]Kr = J𝑀Kr.
2. Assume r ∈ pn(A). By definition of pn(−), r ∈ pn(𝑀 ′). By definition of projection,

JA[𝑀]Kr = B[J𝑀Kr] where B = (𝜆𝑥 : J𝑇 Kr.•) J𝑀 ′Kr.
(2) Assume A = selectp,q 𝑙 •.

1. Assume r ∉ pn(A). By definition of pn(−), r ∉ {p, q}. By definition of projection,

JA[𝑀]Kr = J𝑀Kr.
2. Assume r ∈ pn(A). By definition of pn(−), r = p or r = q.
a. If r = p then JA[𝑀]Kr = B[J𝑀Kr] where B = ⊕q 𝑙 •.
b. If r = q then JA[𝑀]Kr = B[J𝑀Kr] where B = &p{𝑙 : •}.

□

Lemma 4.5. Let 𝑀 = F [𝑁] where Θ; Γ ⊢ 𝑁 : 𝑇 . Then there exists a network-level frame F such
that, for any 𝑁 ′ where Θ; Γ ⊢ 𝑁 ′

: 𝑇 ,
(1) If r ∈ pn(𝑁 ′) then F [J𝑁 ′Kr] = JF [𝑁 ′]Kr.
(2) If r ∉ pn(𝑁 ′) then F [J𝑁 ′Kr]

𝜏
↠ JF [𝑁 ′]Kr.

Proof. By case analysis on F .

(1) Assume F = •𝑀 ′
. We show that F = • J𝑀 ′Kr.

1. Assume r ∈ pn(𝑁 ′). By definition of projection, JF [𝑁 ′]Kr = J𝑁 ′Kr J𝑀
′Kr. Hence JF [𝑁 ′]Kr =

F [J𝑁 ′Kr].
2. Otherwise, r ∉ pn(𝑁 ′). By Lemma 4.2, J𝑁 ′Kr = ⊥.
a. Assume r ∈ pn(𝑀 ′). By definition of projection, JF [𝑁 ′]Kr = ⊥ J𝑀 ′Kr. Hence F [⊥] =

JF [𝑁 ′]Kr.
b. Otherwise, r ∉ pn(𝑀 ′). By definition of projection, JF [𝑁 ′]Kr = ⊥. Notice F [⊥] = ⊥ ⊥.

Hence F [⊥] −→ JF [𝑁 ′]Kr.
(2) Assume F = 𝑉 •. We show that F = J𝑉Kr •.

1. Assume r ∈ pn(𝑁 ′). By definition of projection, JF [𝑁 ′]Kr = J𝑉Kr J𝑁 ′Kr. Hence JF [𝑁 ′]Kr =
F [J𝑁 ′Kr].

2. Otherwise, r ∉ pn(𝑁 ′). By Lemma 4.2, J𝑁 ′Kr = ⊥.
a. Assume r ∈ pn(𝑉). By definition of projection, JF [𝑁 ′]Kr = J𝑉Kr ⊥. Hence F [⊥] =

JF [𝑁 ′]Kr.
b. Otherwise, r ∉ pn(𝑉). By definition of projection, JF [𝑁 ′]Kr = ⊥ Notice F [⊥] = ⊥ ⊥.

Hence F [⊥] −→ JF [𝑁 ′]Kr.
(3) Assume F = let 𝑥 : 𝑇 = • in 𝑀 ′

. We show that F = (𝜆𝑥 : J𝑇 Kr.J𝑀
′Kr) •.

1. Assume r ∈ pn(𝑁 ′). By definition of projection, JF [𝑁 ′]Kr = (𝜆𝑥 : J𝑇 Kr.J𝑀
′Kr) J𝑁 ′Kr.

Hence JF [𝑁 ′]Kr = F [J𝑁 ′Kr].
2. Otherwise, r ∉ pn(𝑁 ′). By definition of projection, JF [𝑁 ′]Kr = J𝑀 ′Kr. Hence F [⊥] =

(𝜆𝑥 : J𝑇 Kr.J𝑀
′Kr) ⊥ −→ J𝑀 ′Kr = JF [𝑁 ′]Kr.

(4) Assume F = if • then 𝑀1 else 𝑀2 and r ∈ pn(𝑇). By definition of projection, JF [𝑁 ′]Kr =
if J𝑁 ′Kr then J𝑀1Kr else J𝑀2Kr. We show F = if • then J𝑀1Kr else J𝑀2Kr. By Lemma A.7,

r ∈ pn(type(𝑁 ′)) is only satisfied when r ∈ pn(𝑁 ′). By definition, JF [𝑁 ′]Kr = F [J𝑁 ′Kr].

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

269:36 Dan Plyukhin, Xueying Qin, and Fabrizio Montesi

(5) Assume F = if • then 𝑀1 else 𝑀2 and r ∉ pn(𝑇). We show F = (𝜆𝑥 : ⊥.J𝑀1Kr ⊔ J𝑀2Kr) •.
1. Assume r ∈ pn(𝑁 ′). By definition of projection, JF [𝑁 ′]Kr = (𝜆𝑥 : ⊥.J𝑀1Kr ⊔ J𝑀2Kr) J𝑁 ′Kr.

Hence JF [𝑁 ′]Kr = F [J𝑁 ′Kr].
2. Otherwise, r ∉ pn(𝑁 ′). By definition of projection, JF [𝑁 ′]Kr = J𝑀1Kr ⊔ J𝑀2Kr. Notice

F [⊥] = (𝜆𝑥 : ⊥.J𝑀1Kr ⊔ J𝑀2Kr) ⊥. Hence F [⊥] −→ JF [𝑁 ′]Kr.
□

Lemma 4.6. Let Δ be a redex at r that is not an (app) or (commute) redex. Then JΔKr = 𝛿 for some
network-level redex 𝛿 .

Proof. By case analysis on choreographic redexes at r.

(1) Assume Δ = comp,q 𝑀 .

1. Assume r = p and𝑀 = 𝑐@p. By definition of projection, JΔKr = sendq 𝑐 , which is a redex

for (send).
2. Otherwise, r = q. By definition of projection and Lemma 4.2, JΔKr = recvp ⊥, which is a

redex for (receive).
(2) Assume Δ = selectp,q 𝑙 𝑀 ′

where r ∈ {p, q}.
1. Assume r = p. By definition of projection, JΔKr = ⊕q 𝑙 J𝑀 ′Kr, which is a redex for (choice).
2. Otherwise, r = q. By definition of projection, JΔKr = &p{𝑙 : J𝑀 ′Kr}, which is a redex for

(offer).
(3) Assume Δ = let 𝑥 : 𝑇 = 𝑉 in 𝑀 where r ∈ pn(𝑉).

1. By definition of projection, JΔKr = (𝜆𝑥 : J𝑇 Kr.J𝑀Kr) J𝑉Kr. By Lemma 4.1, J𝑉Kr is a value 𝐿.
Hence JΔKr is a redex for (p-app).

(4) Assume Δ = if 𝑀 then 𝑀 true else 𝑀 false where r ∈ pn(Δ).
1. Assume p ∈ pn(𝑀). Then 𝑀 = 𝑐@p for some 𝑐 . By definition of projection, JΔKr =

if 𝑐 then J𝑀 trueKr else J𝑀 falseKr, which is a redex for (p-if).
2. Otherwise, r ≠ p. By definition of projection, JΔKr = J𝑀1Kr ⊔ J𝑀2Kr. We assumed r ∈ pn(Δ),

so r ∈ pn(𝑀1) ∪ pn(𝑀2). By Lemma 4.2, J𝑀1Kr ≠ ⊥ or J𝑀2Kr ≠ ⊥. Hence, by definition

of (⊔), J𝑀1Kr ⊔ J𝑀2Kr has the form &q{𝑙1 : 𝑅1, . . . , 𝑙𝑛 : 𝑅𝑛} for some 𝑛, which is a redex for

(offer).
(5) Assume Δ = 𝑓 (p).

1. Then r ∈ p because we assumed r ∈ pn(Δ). By definition of projection, J𝑓 (p)Kr = 𝑓𝑖 (q) for
some q ⊆ p and some 𝑖 .

□

Lemma 4.7. Let 𝑀 = Er [𝑁] where Θ; Γ ⊢ 𝑁 : 𝑇 . Then there exists a network-level evaluation
context E such that, for any 𝑁 ′ where Θ; Γ ⊢ 𝑁 ′

: 𝑇 ,
(1) If r ∈ pn(𝑁 ′) then E[J𝑁 ′Kr] = JEr [𝑁 ′]Kr.
(2) If r ∉ pn(𝑁 ′) then E[J𝑁 ′Kr]

𝜏
↠ JEr [𝑁 ′]Kr.

Proof. Let𝑀 = Er [𝑁] where Θ; Γ ⊢ 𝑁 : 𝑇 . Proceed by induction on the structure of Er.

(1) Assume Er = •. We show E = •. Notice that JEr [𝑁 ′]Kr = J𝑁 ′Kr = E[J𝑁 ′Kr] and E[⊥] = ⊥.
1. Assume r ∈ pn(𝑁 ′). Then JEr [𝑁 ′]Kr = E[J𝑁 ′Kr].
2. Assume r ∉ pn(𝑁 ′). By Lemma 4.2, J𝑁 ′Kr = ⊥. Hence E[⊥] = JEr [𝑁 ′]Kr.

(2) Otherwise, Er = F [E′
r].

1. In the type derivation of𝑀 , let 𝑇 ′
be the type of E′

r [𝑁].
2. By the induction hypothesis, there exists E′

such that, for any𝑁 ′
of type𝑇 , (1) if r ∈ pn(𝑁 ′)

then JE′
r [𝑁 ′]Kr = E′ [J𝑁 ′Kr]; and (2) if r ∉ pn(𝑁 ′) then E′ [⊥] 𝜏

↠ JE′
r [𝑁 ′]Kr.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

Relax! The Semilenient Core of Choreographic Programming (Extended Version) 269:37

3. By Lemma 4.5, there exists E′′
such that, for any 𝑁 ′′

of type 𝑇 ′
, (1) if r ∈ pn(𝑁 ′′) then

JF [𝑁 ′′]Kr = E′′ [J𝑁 ′′Kr]; and (2) if r ∉ pn(𝑁 ′′) then E′′ [⊥] 𝜏
↠ JF [𝑁 ′′]Kr.

4. We show E = E′′ [E′].
5. Assume r ∈ pn(𝑁 ′).
a. Then r ∈ pn(E′

r [𝑁]).
b. Letting 𝑁 ′′

:= E′
r [𝑁 ′], we have JF [E′

r [𝑁 ′]]Kr = E′′ [JE′
r [𝑁 ′]Kr] = E′′ [E′ [J𝑁 ′Kr]].

c. Hence JEr [𝑁 ′]Kr = E[J𝑁 ′Kr].
6. Assume r ∉ pn(𝑁 ′).
a. Assume r ∈ pn(E′

r). Then r ∈ pn(E′
r [𝑁]). By instantiating 𝑁 ′′

:= E′
r [𝑁 ′], we have

JF [E′
r [𝑁 ′]]Kr = E′′ [JE′

r [𝑁 ′]Kr]. SinceE′ [⊥] 𝜏
↠ JE′

r [𝑁 ′]Kr, we also have E′′ [E′ [⊥]] 𝜏
↠

E′′ [JE′
r [𝑁 ′]Kr]. Hence E[⊥]

𝜏
↠ JF [E′

r [𝑁 ′]]Kr.
b. Otherwise, r ∉ pn(E′

r). By Lemma 4.2, JE′
r [𝑁 ′]Kr = ⊥. By instantiating 𝑁 ′′

:= E′
r [𝑁 ′], we

have E′′ [⊥] 𝜏
↠ JF [E′

r [𝑁 ′]]Kr. Since E′ [⊥] 𝜏
↠ JE′

r [𝑁 ′]Kr, we have E′ [⊥] 𝜏
↠ ⊥. Hence

E′′ [E′ [⊥]] 𝜏
↠ E′′ [⊥]. Hence E[⊥] 𝜏

↠ JF [E′
r [𝑁 ′]]Kr.

(3) Otherwise, Er = A[E′
r] where r ∉ pn(A).

1. By Lemma 4.4, JA[E′
r [𝑁]]Kr = JE′

r [𝑁]Kr.
2. By the induction hypothesis for E′

r [𝑁], there exists E′
such that for any 𝑁 ′

of type 𝑇 , (1)

r ∈ pn(𝑁 ′) implies JE′
r [𝑁]Kr = E′ [J𝑁Kr] and (2) r ∉ pn(𝑁 ′) implies E′ [⊥] 𝜏

↠ JE′
r [𝑁]Kr.

3. We show E = E′
.

4. Assume r ∈ pn(𝑁 ′). Then JEr [𝑁 ′]Kr = JE′
r [𝑁]Kr = E′ [J𝑁Kr]. Hence JEr [𝑁 ′]Kr =

E[J𝑁Kr].
5. Otherwise, r ∉ pn(𝑁 ′). Then E[⊥] = E′ [⊥] 𝜏

↠ JE′
r [𝑁 ′]Kr = JEr [𝑁 ′]Kr. Hence E[⊥]

𝜏
↠

JEr [𝑁 ′]Kr.
□

Lemma A.10. Let p, r be roles such that p ≠ r. Let𝑀 = Er [𝑁] where Θ; Γ ⊢ 𝑁 : 𝑇 . Then there exists
a degenerate context O such that, for any 𝑁 ′ where Θ; Γ ⊢ 𝑁 ′

: 𝑇 ,
(1) If p ∈ pn(𝑁 ′) then O[J𝑁 ′Kp] = JEr [𝑁 ′]Kp.
(2) If p ∉ pn(𝑁 ′) then O[J𝑁 ′Kp] ⇝⇝ JEr [𝑁 ′]Kp.

Proof. Let 𝑀 = Er [𝑁] where 𝑁 is given type 𝑇 by the judgment Θ; Γ ⊢ 𝑁 : 𝑇 . Proceed by

induction on the structure of Er.

(1) Assume Er = •. We show O = •.
1. Notice that JEr [𝑁 ′]Kp = J𝑁 ′Kp = O[J𝑁 ′Kp] and O[⊥] = ⊥.
2. Assume r ∈ pn(𝑁 ′). Then JEr [𝑁 ′]Kr = O[J𝑁 ′Kr].
3. Assume r ∉ pn(𝑁 ′). By Lemma 4.2, J𝑁 ′Kr = ⊥. Hence O[⊥] = JEr [𝑁 ′]Kr.

(2) Otherwise, Er = F [E′
r].

1. In the type derivation of𝑀 , let 𝑇 ′
be the type of E′

r [𝑁].
2. By the induction hypothesis, there existsO′

such that, for any𝑁 ′
of type𝑇 , (1) if p ∈ pn(𝑁 ′)

then JE′
r [𝑁 ′]Kp = O′ [J𝑁 ′Kp]; and (2) if p ∉ pn(𝑁 ′) then O′ [⊥] ⇝⇝ JE′

r [𝑁 ′]Kp.
3. By Lemma 4.5, there exists E′′

such that, for any 𝑁 ′′
of type 𝑇 ′

, (1) if p ∈ pn(𝑁 ′′) then
JF [𝑁 ′′]Kp = E′′ [J𝑁 ′′Kp]; and (2) if p ∉ pn(𝑁 ′′) then E′′ [⊥] 𝜏

↠ JF [𝑁 ′′]Kp.
4. We show O = E′′ [O′].
5. Assume p ∈ pn(𝑁 ′).
a. Then p ∈ pn(E′

r [𝑁]).
b. Letting 𝑁 ′′

:= E′
r [𝑁 ′], we have JF [E′

r [𝑁 ′]]Kp = E′′ [JE′
r [𝑁 ′]Kp] = E′′ [O′ [J𝑁 ′Kp]].

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

269:38 Dan Plyukhin, Xueying Qin, and Fabrizio Montesi

c. Hence JEr [𝑁 ′]Kp = E[J𝑁 ′Kp].
6. Assume p ∉ pn(𝑁 ′).
a. Assume p ∈ pn(E′

r).
(1) Then p ∈ pn(E′

r [𝑁]).
(2) By instantiating 𝑁 ′′

:= E′
r [𝑁 ′], we have JF [E′

r [𝑁 ′]]Kp = E′′ [JE′
r [𝑁 ′]Kp].

(3) Since O′ [⊥] ⇝⇝ JE′
r [𝑁 ′]Kp, we also have E′′ [O′ [⊥]] ⇝⇝ E′′ [JE′

r [𝑁 ′]Kp].
(4) Hence O[⊥] ⇝⇝ JF [E′

r [𝑁 ′]]Kp.
b. Otherwise, p ∉ pn(E′

r).
(1) By Lemma 4.2, JE′

r [𝑁 ′]Kp = ⊥.
(2) By instantiating 𝑁 ′′

:= E′
r [𝑁 ′], we have E′′ [⊥] 𝜏

↠ JF [E′
r [𝑁 ′]]Kp.

(3) Since O′ [⊥] ⇝⇝ JE′
r [𝑁 ′]Kp, we have O′ [⊥] ⇝⇝ ⊥.

(4) Hence E′′ [O′ [⊥]] ⇝⇝ E′′ [⊥].
(5) Hence E[⊥] ⇝⇝ JF [E′

r [𝑁 ′]]Kr.
(3) Otherwise, Er = A[E′

r] where p ∈ pn(A).
1. By Lemma 4.4, JA[E′

r [𝑁]]Kp = B[JE′
r [𝑁]Kp] for some B.

2. By the induction hypothesis for E′
r [𝑁], there exists O′

such that for any 𝑁 ′
of type 𝑇 ,

(1) p ∈ pn(𝑁 ′) implies JE′
r [𝑁]Kp = O′ [J𝑁Kp] and (2) p ∉ pn(𝑁 ′) implies O′ [⊥] ⇝⇝

JE′
r [𝑁]Kp.

3. We show O = B[O′].
4. Assume p ∈ pn(𝑁 ′). Then JEr [𝑁 ′]Kp = B[JE′

r [𝑁]Kp] = B[O′ [J𝑁Kp]]. Hence JEr [𝑁 ′]Kp =
O[J𝑁Kp].

5. Otherwise, p ∉ pn(𝑁 ′). Then O[⊥] = B[O′ [⊥]] ⇝⇝ B[JE′
r [𝑁 ′]Kp] = JEr [𝑁 ′]Kp. Hence

O[⊥] ⇝⇝ JEr [𝑁 ′]Kp.
□

Lemma 4.8. Let (⇝⇝) be the reflexive transitive closure of (⇝). If𝑀 𝜏
↠ 𝑀 ′ only by (commute) and

(app) reductions, then J𝑀K ⇝⇝ J𝑀 ′K.

Proof. First we show that for any r, JF [A[𝑀]]Kr ⇝⇝ JA[F [𝑀]]Kr.
(1) Assume r ∈ pn(𝑀).

1. Assume r ∈ pn(A).
a. By lemma 4.4, there exists B such that JA[𝑁]Kr = B[J𝑁Kr] for any 𝑁 .

b. By Lemma 4.5, there exists F such that both (1) JF [A[𝑀]]Kr = F [B[J𝑀Kr]] and (2)

JA[F [𝑀]]Kr = B[F [J𝑀Kr]].
c. Hence J𝑀Kr ⇝ J𝑀 ′Kr.

2. Assume r ∉ pn(A).
a. By Lemma 4.4, JA[𝑁]Kr = J𝑁Kr for any 𝑁 .

b. Hence JA[F [𝑀]]Kr = JF [𝑀]Kr.
c. By Lemma 4.5, there exists F such that both (1) JF [A[𝑀]]Kr = F [J𝑀Kr] and (2)

JA[F [𝑀]]Kr = F [J𝑀Kr].
d. Hence JF [A[𝑀]]Kr = F [J𝑀Kr] = JA[F [𝑀]]Kr.

(2) Assume r ∉ pn(𝑀).
1. By Lemma 4.2, J𝑀Kr = ⊥.
2. Assume r ∈ pn(A).
a. By Lemma 4.4 there exists B such that JA[𝑁]Kr = B[J𝑁Kr] for any 𝑁 .

b. By Lemma 4.5, there exists F such that both (1) JF [A[𝑀]]Kr = F [B[⊥]], and (2)

F [⊥] 𝜏
↠ JF [𝑀]Kr.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

Relax! The Semilenient Core of Choreographic Programming (Extended Version) 269:39

c. Hence JF [A[𝑀]]Kr = F [B[⊥]] ⇝ B[F [⊥]] ⇝ B[JF [𝑀]Kr] = JA[F [𝑀]]Kr.
3. Assume r ∉ pn(A).
a. By Lemma 4.4, JA[𝑁]Kr = J𝑁Kr for any 𝑁 .

b. Hence JA[F [𝑀]]Kr = JF [𝑀]Kr.
c. Observe r ∉ pn(𝑀) and r ∉ pn(A[𝑀]).
d. By Lemma 4.3, JF [𝑀]Kr = JF [A[𝑀]]Kr.
e. Hence JF [A[𝑀]]Kr = JF [𝑀]Kr = JA[F [𝑀]]Kr.

Next, we show that for any r, J(𝜆𝑥 : 𝑇 .𝑀) 𝑀 ′Kr ⇝⇝ Jlet 𝑥 : 𝑇 = 𝑀 ′ in 𝑀Kr.
(1) Assume r ∈ pn(𝑀 ′).

1. Assume r ∈ pn(𝜆𝑥 : 𝑇 .𝑀).
a. By definition of projection, J(𝜆𝑥 : 𝑇 .𝑀) 𝑀 ′Kr = (𝜆𝑥 : J𝑇 Kr.J𝑀Kr) J𝑀 ′Kr.
b. By definition of projection, Jlet 𝑥 : 𝑇 = 𝑀 ′ in 𝑀Kr = (𝜆𝑥 : J𝑇 Kr.J𝑀Kr) J𝑀 ′Kr.
c. Hence J(𝜆𝑥 : 𝑇 .𝑀) 𝑀 ′Kr = Jlet 𝑥 : 𝑇 = 𝑀 ′ in 𝑀Kr.

2. Otherwise, r ∉ pn(𝜆𝑥 : 𝑇 .𝑀).
a. By Lemma 4.2, J𝜆𝑥 : 𝑇 .𝑀Kr = ⊥ and J𝑀Kr = ⊥.
b. By definition of projection, J(𝜆𝑥 : 𝑇 .𝑀) 𝑀 ′Kr = ⊥ J𝑀 ′Kr.
c. By definition of projection, Jlet 𝑥 : 𝑇 = 𝑀 ′ in 𝑀Kr = (𝜆𝑥 : ⊥. ⊥) J𝑀 ′Kr.
d. Hence J(𝜆𝑥 : 𝑇 .𝑀) 𝑀 ′Kr ⇝ Jlet 𝑥 : 𝑇 = 𝑀 ′ in 𝑀Kr by (bottom2).

(2) Assume r ∉ pn(𝑀 ′).
1. By Lemma 4.2, J𝑀 ′Kr = ⊥.
2. Assume r ∈ pn(𝑀).
a. By definition of projection, J(𝜆𝑥 : 𝑇 .𝑀) 𝑀 ′Kr = (𝜆𝑥 : J𝑇 Kr.J𝑀Kr) ⊥.
b. By definition of projection, Jlet 𝑥 : 𝑇 = 𝑀 ′ in 𝑀Kr = J𝑀Kr.
c. Hence J(𝜆𝑥 : 𝑇 .𝑀) 𝑀 ′Kr −→ Jlet 𝑥 : 𝑇 = 𝑀 ′ in 𝑀Kr.

3. Otherwise, r ∉ pn(𝑀).
a. By Lemma 4.2, J𝑀Kr = ⊥.
b. By definition of projection, J(𝜆𝑥 : 𝑇 .𝑀) 𝑀 ′Kr = ⊥.
c. By definition of projection, Jlet 𝑥 : 𝑇 = 𝑀 ′ in 𝑀Kr = J𝑀Kr = ⊥.
d. Hence J(𝜆𝑥 : 𝑇 .𝑀) 𝑀 ′Kr = Jlet 𝑥 : 𝑇 = 𝑀 ′ in 𝑀Kr.

□

Lemma A.11. If (𝜆𝑥 : 𝑇 . 𝑃) 𝐿 ⇝ (𝜆𝑥 : 𝑇 . 𝑃 ′) 𝐿 then 𝑃 [𝑥 := 𝐿] ⇝ 𝑃 ′ [𝑥 := 𝐿].

Proof. Assume (𝜆𝑥 : 𝑇 . 𝑃) 𝐿 ⇝ (𝜆𝑥 : 𝑇 . 𝑃 ′) 𝐿. Then O[Δ] = (𝜆𝑥 : 𝑇 . 𝑃) 𝐿 for some O,Δ. This
is only possible if O = (𝜆𝑥 : 𝑇 . O′) 𝐿 for some O′

. Notice that for every F and B, the substitutions

F [𝑥 := 𝐿] and B[𝑥 := 𝐿] are valid frames and degenerate contexts, respectively. Proceeding by

induction onO′
, we prove that (𝜆𝑥 : 𝑇 . O′ [Δ]) 𝐿 ⇝ (𝜆𝑥 : 𝑇 . O′ [Δ′]) 𝐿 implies (O′ [Δ]) [𝑥 := 𝐿] ⇝

(O′ [Δ′]) [𝑥 := 𝐿].
(1) Assume O′ = •. By case analysis on the transition (𝜆𝑥 : 𝑇 . 𝑃) 𝐿 ⇝ (𝜆𝑥 : 𝑇 . 𝑃 ′) 𝐿.

1. Case 1: (prune). Then Δ = &q{𝑙𝑖 : 𝑃𝑖 }𝑖∈I and Δ′ = &q{𝑙 𝑗 : 𝑃 𝑗 } 𝑗∈J where J ⊆ I. There-
fore 𝑃 [𝑥 := 𝐿] = &q{𝑙𝑖 : 𝑃𝑖 [𝑥 := 𝐿]}𝑖∈I and 𝑃 ′ [𝑥 := 𝐿] = &q{𝑙 𝑗 : 𝑃 𝑗 [𝑥 := 𝐿]} 𝑗∈J and also

𝑃 [𝑥 := 𝐿] ⇝ 𝑃 ′ [𝑥 := 𝐿].
2. Case 2: (commute). Then Δ = F [B[𝑅]] for some F ,B, 𝑅 . Let F ′ = F [𝑥 := 𝐿] and let B′ =

B[𝑥 := 𝐿]. Then 𝑃 [𝑥 := 𝐿] = F ′ [B′ [𝑅 [𝑥 := 𝐿]]] and 𝑃 ′ [𝑥 := 𝐿] = B′ [F ′ [𝑅 [𝑥 := 𝐿]]].
Hence 𝑃 [𝑥 := 𝐿] ⇝ 𝑃 ′ [𝑥 := 𝐿].

3. Case 3: (bottom2). ThenΔ = ⊥𝑄 andΔ′ = (𝜆𝑥 : ⊥. ⊥)𝑄 . Therefore 𝑃 [𝑥 := 𝐿] = ⊥𝑄 [𝑥 := 𝐿]
and 𝑃 ′ [𝑥 := 𝐿] = (𝜆𝑥 : ⊥. ⊥) 𝑄 [𝑥 := 𝐿]. Hence 𝑃 [𝑥 := 𝐿] ⇝ 𝑃 ′ [𝑥 := 𝐿] by (bottom2).

4. Case 4: (compute). Proceed by case analysis on the redex Δ.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

269:40 Dan Plyukhin, Xueying Qin, and Fabrizio Montesi

a. Assume Δ = (𝜆𝑥 : 𝑆. 𝑅) 𝐿′. Then 𝑃 [𝑥 := 𝐿] = (𝜆𝑥 : 𝑆. 𝑅) (𝐿′ [𝑥 := 𝐿]) and 𝑃 ′ [𝑥 := 𝐿] =
𝑅 [𝑥 := 𝐿′] [𝑥 := 𝐿]. Then𝑅 [𝑥 := 𝐿′] [𝑥 := 𝐿] = 𝑅 [𝑥 := (𝐿′ [𝑥 := 𝐿])] implies 𝑃 [𝑥 := 𝐿] ⇝
𝑃 ′ [𝑥 := 𝐿].

b. Assume Δ = (𝜆𝑦 : 𝑆. 𝑅) 𝐿′ where 𝑥 ≠ 𝑦 and 𝑦 ∉ fv(𝐿). Then it must follow that

𝑃 [𝑥 := 𝐿] = (𝜆𝑦 : 𝑆. 𝑅 [𝑥 := 𝐿]) (𝐿′ [𝑥 := 𝐿]) and 𝑃 ′ [𝑥 := 𝐿] = 𝑅 [𝑦 := 𝐿′] [𝑥 := 𝐿]. Since
𝑅 [𝑦 := 𝐿′] [𝑥 := 𝐿] = 𝑅 [𝑥 := 𝐿] [𝑦 := 𝐿′ [𝑥 := 𝐿]], we have 𝑃 [𝑥 := 𝐿] ⇝ 𝑃 ′ [𝑥 := 𝐿].

c. Assume Δ = if 𝑐 then 𝑅1 else 𝑅2, where 𝑐 = true without loss of generality. Then

𝑃 [𝑥 := 𝐿] = if true then 𝑅1 [𝑥 := 𝐿] else 𝑅2 [𝑥 := 𝐿] and 𝑃 ′ [𝑥 := 𝐿] = 𝑅1 [𝑥 := 𝐿]. Hence
𝑃 [𝑥 := 𝐿] ⇝ 𝑃 ′ [𝑥 := 𝐿].

d. Assume Δ = 𝑓 (p). Then Δ′
is some closed term 𝑅 . Hence 𝑃 [𝑥 := 𝐿] = Δ and 𝑃 ′ [𝑥 := 𝐿] =

Δ′
, so 𝑃 [𝑥 := 𝐿] ⇝ 𝑃 ′ [𝑥 := 𝐿].

e. Assume Δ = ⊥ ⊥. Then 𝑃 [𝑥 := 𝐿] = Δ and 𝑃 ′ [𝑥 := 𝐿] = Δ′
, so 𝑃 [𝑥 := 𝐿] ⇝ 𝑃 ′ [𝑥 := 𝐿].

(2) Assume O′ = F [O′′] for some F . Let F ′ = F [𝑥 := 𝐿]. Then 𝑃 [𝑥 := 𝐿] = F ′ [O′′ [Δ]] and
𝑃 ′ [𝑥 := 𝐿] = F ′ [O′′ [Δ′]] so 𝑃 [𝑥 := 𝐿] ⇝ 𝑃 ′ [𝑥 := 𝐿] by the induction hypothesis.

(3) Assume O′ = B[O′′] for some B. As above.

□

Lemma A.12. Let 𝑃 ⇝ 𝑃 .

(1) If 𝑃 = E[&q{𝑙𝑖 : 𝑃𝑖 }𝑖∈I] then 𝑃 = ˜E[&q{𝑙 𝑗 : 𝑃 𝑗 } 𝑗∈J] for some ˜E, J ⊆ I, and {𝑃 𝑗 } 𝑗∈J .
(2) If 𝑃 = E[⊕q 𝑙 𝑃

′] then 𝑃 = ˜E[⊕q 𝑙 𝑃
′] for some ˜E, 𝑃 ′.

Proof. Assume 𝑃 ⇝ 𝑃 . Then 𝑃 = O[Δ] and 𝑃 = O[Δ′] for some O,Δ,Δ′
. Proceed by induction

on O.

(1) Assume O = •.
1. Assume 𝑃 ⇝ 𝑃 by (prune). Then E = • and 𝑃 = ˜E[&q{𝑙 𝑗 : 𝑃 𝑗 } 𝑗∈J] where ˜E = • and

J ⊆ I.
2. Assume 𝑃 ⇝ 𝑃 by (compute). Then 𝑃 is neither E[&q{𝑙𝑖 : 𝑃𝑖 }𝑖∈I] nor E[⊕q 𝑙 𝑃

′].
3. Assume 𝑃 ⇝ 𝑃 by (bottom2). Then E = ⊥ E′

for some E′
. Hence for any 𝛿 , if 𝑃 = E[𝛿]

then 𝑃 = ˜E[𝛿] where ˜E = (𝜆𝑥 : ⊥. ⊥) E′
.

4. Assume 𝑃 ⇝ 𝑃 by (commute). Then 𝑃 = F [B[𝑅]] for some F ,B, 𝑅 . Proceed by case

analysis on B.

a. Assume B = ⊕r 𝑙
′ •. Then E = F and 𝑃 = E[⊕q 𝑙 𝑃

′]. Hence 𝑃 = ⊕q 𝑙 F [𝑃 ′].
b. Assume B = &r{𝑙𝑘 : •} for some 𝑘 . Then E = F and 𝑃 = E[&q{𝑙𝑖 : 𝑃𝑖 }𝑖∈I] where

I = {𝑘}. Hence 𝑃 = &q{𝑙𝑘 : F [𝑃𝑘]}.
c. Assume B = (𝜆𝑥 : 𝑇 . •) 𝑅′

. Then E = F [(𝜆𝑥 : 𝑇 . 𝑅) E′] for some E′
. Hence for any 𝛿 , if

𝑃 = E[𝛿] then 𝑃 = ˜E[𝛿] where ˜E = (𝜆𝑥 : 𝑇 . F [𝑅]) E′
.

(2) Assume O = F ′ [O′].
1. Assume F ′ = • 𝑅 . Notice O′ [Δ] cannot be a value, so E = F ′ [E′] for some E′

. The result

then follows by induction.

2. Assume F ′ = 𝐿 • and 𝐿 is a value. Then E = F ′ [E′] for some E′
and the result follows by

induction.

3. Assume F ′ = if • then 𝑅1 else 𝑅2. As above.
(3) Assume O = B[O′].

1. Assume B = ⊕r 𝑙
′ •. Then 𝑃 = E[⊕q 𝑙 𝑃

′] where E = •. Hence 𝑃 = ⊕q 𝑙 O′ [Δ′].
2. Assume B = &r{𝑙𝑘 : •} for some 𝑘 . Then 𝑃 = E[&q{𝑙𝑖 : 𝑃𝑖 }𝑖∈I] where E = • and I = {𝑘}.

Hence 𝑃 = &q{𝑙𝑘 : O′ [Δ′]}.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

Relax! The Semilenient Core of Choreographic Programming (Extended Version) 269:41

3. Assume B = (𝜆𝑥 : 𝑇 . •) 𝑅 . Then E = (𝜆𝑥 : 𝑇 . O′ [Δ]) E′
for some E′

. Hence for any 𝛿 , if

𝑃 = E[𝛿] then 𝑃 = ˜E[𝛿] where ˜E = (𝜆𝑥 : 𝑇 . O′ [Δ′]) E′
.

□

Theorem 4.10 (Prophecy Theorem). Let𝑀 be a choreography, N a network, and N⇝⇝ J𝑀K.

• (Completeness) If J𝑀K
𝜇−→ ˜N ′ then there exists N ′ such that N 𝜏

↠
𝜇−→ N ′ ⇝⇝ ˜N ′ .

• (Soundness) IfN
𝜇
−→ N ′ where 𝜇 ≠ 𝜏 then there exists ˜N ′ such that J𝑀K

𝜇
−→ ˜N ′ andN ′ ⇝⇝ ˜N ′ .

If N 𝜏−→ N ′ then either N ′ ⇝⇝ J𝑀K or there exists ˜N ′ such that J𝑀K
𝜏−→ ˜N ′ and N ′ ⇝⇝ ˜N ′ .

Proof (Completeness). Assuming 𝑃 ⇝ 𝑃1 and 𝑃1
𝜇−→ 𝑃2, we find 𝑃3 such that the following

diagram commutes:

𝑃1 = O[Δ′] = E[𝛿] E[𝛿 ′] = 𝑃2

𝑃 = O[Δ] 𝑃3

𝜇

𝜏? 𝜇

We proceed by induction on the structure of O.

(1) Assume O = •.
1. Assume O[Δ] ⇝ O[Δ′] by the (compute) rule.
a. Notice O is an evaluation context and Δ is a redex.

b. Hence 𝑃
𝜏−→ 𝑃1

𝜇−→ 𝑃3 where 𝑃3 = 𝑃2.

2. Assume O[Δ] ⇝ O[Δ′] by the (bottom2) rule.
a. Since O = •, this implies 𝑃 = ⊥ 𝑅 and 𝑃1 = (𝜆𝑥 : ⊥. ⊥) 𝑅.
b. If 𝑅 = ⊥ then 𝜇 = 𝜏 , 𝑃2 = ⊥, and 𝑃

𝜇−→ 𝑃3 ⇝⇝ 𝑃2 where 𝑃3 = 𝑃3. Otherwise, E =

(𝜆𝑥 : ⊥. ⊥) E′
for some E′

where E′ [𝛿] 𝜇−→ E′ [𝛿 ′]. Hence 𝑃 𝜇−→ 𝑃3 ⇝⇝ 𝑃2 where 𝑃3 =

⊥ E′ [𝛿 ′] and 𝑃2 = (𝜆𝑥 : ⊥. ⊥) E′ [𝛿 ′].
3. Assume O[Δ] ⇝ O[Δ′] by the (prune) rule.
a. Since O = •, this implies 𝑃 = &q{𝑙𝑖 : 𝑅𝑖 }𝑖∈I and 𝑃1 = &q{𝑙 𝑗 : 𝑅 𝑗 } 𝑗∈J for some q,I,J ,

{𝑙𝑖 }𝑖∈I, {𝑅𝑖 }𝑖∈I , where J ⊆ I.
b. In order to have 𝑃1 = E[𝛿] 𝜇−→ E[𝛿 ′], we must have 𝜇 = selectq,p 𝑙 𝑗∗ for some 𝑗∗ ∈ J and

E = • and 𝛿 ′ = 𝑅 𝑗∗ .

c. Since O is an evaluation context and 𝑗∗ ∈ J ⊆ I, we have 𝑃 𝜇−→ 𝑃3 = 𝑃2 where 𝑃3 = 𝑅 𝑗∗ .

4. Assume O[Δ] ⇝ O[Δ′] by the (commute) rule. Then 𝑃 = F [B[𝑅]] for some F ,B, 𝑅 . We

proceed by case analysis on B.

a. Assume B = ⊕q 𝑙 •.
(1) Then 𝑃1 = ⊕q 𝑙 F [𝑅]. Since 𝑃1

𝜇−→ 𝑃2, we must have 𝜇 = selectp,q 𝑙 and 𝑃2 = F [𝑅].
(2) Notice F is an evaluation context. Hence 𝑃

𝜇−→ 𝑃3 where 𝑃3 = 𝑃2.

b. Assume B = &q{𝑙 : •}.
(1) Then 𝑃1 = &q{𝑙 : F [𝑅]}. Since 𝑃1

𝜇−→ 𝑃2, we must have 𝜇 = selectq,p 𝑙 and 𝑃2 = F [𝑅].
(2) Again, F is an evaluation context. Hence 𝑃

𝜇−→ 𝑃3 where 𝑃3 = 𝑃2.

c. Assume B = (𝜆𝑥 : 𝑇 . •) 𝐿, where 𝐿 is a value.

(1) Then 𝑃1 = (𝜆𝑥 : 𝑇 . F [𝑅]) 𝐿. Since 𝑃1
𝜇−→ 𝑃2, we must have 𝑃2 = F [𝑅] [𝑥 := 𝐿] and

𝜇 = 𝜏 .

(2) Observe 𝑃 = F [(𝜆𝑥 : 𝑇 . 𝑅) 𝐿] and 𝑃 𝜇−→ 𝑃3 where 𝑃3 = F [𝑅 [𝑥 := 𝐿]].
(3) Since 𝑃 is closed, F has no free variables. Hence 𝑃3 = 𝑃2.

d. Assume B = (𝜆𝑥 : 𝑇 . •) 𝑅′
, where 𝑅′

is not a value.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

269:42 Dan Plyukhin, Xueying Qin, and Fabrizio Montesi

(1) Then 𝑃1 = (𝜆𝑥 : 𝑇 . F [𝑅]) 𝑅′
and 𝑃2 = (𝜆𝑥 : 𝑇 . F [𝑅]) 𝑅′′

for some 𝑅′′
. Then 𝑃

𝜇−→ 𝑃3
and 𝑃3 ⇝ 𝑃2 where 𝑃3 = F [(𝜆𝑥 : 𝑇 . 𝑅) 𝑅′′].

(2) Assume O = F ′ [O′] where F ′ = • 𝑅 .
1. Assume E = •. Here it suffices to show 𝑃

𝜏−→ 𝑃1, since 𝑃
𝜏−→ 𝑃1 and the assumption 𝑃1

𝜇−→ 𝑃2
implies 𝑃

𝜏−→ 𝜇−→ 𝑃3 ⇝⇝ 𝑃2 where 𝑃3 = 𝑃2.

a. Since 𝑃1 = O′ [Δ′] 𝑅 is an application term, the redex 𝛿 must have the form sendq 𝑐 ,
recvq ⊥, (𝜆𝑥 : 𝑇 . 𝑄) 𝐿, or ⊥ ⊥. In all four cases, O′ [Δ′] and 𝑅 are both values.

b. Since O′ [Δ′] is a value, O′ [Δ] ⇝ O′ [Δ′] cannot have proceeded by a (prune), (commute),
or (bottom2) step; it must have been a (compute) step. Since O′ [Δ] ⇝ O′ [Δ′] was a
(compute) step resulting in a value, we must have O′ = • and Δ must be a redex that

contracts into a value.

c. Since O′ = •, it follows that F ′ [O′] is an evaluation context. Hence F ′ [O′ [Δ]] 𝜏−→
F [O′ [Δ′]], i.e. 𝑃 𝜏−→ 𝑃1.

2. Assume E = F [E′] where F = • 𝑄 . Then the result follows by induction.

3. Assume E = F [E′] where F = 𝐿 •. Again, it suffices to show 𝑃
𝜏−→ 𝑃1.

a. Notice O′ [Δ′] = 𝐿 is a value. Hence O′ [Δ] ⇝ O′ [Δ′] must have been a (compute) step
where O′ = • and Δ is a redex that contracts into a value. Since O′ = •, it follows that
F ′ [O′] is an evaluation context. Hence F ′ [O′ [Δ]] 𝜏−→ F [O′ [Δ′]], i.e. 𝑃 𝜏−→ 𝑃1.

4. Assume E = F [E′] where F = if • then 𝑄1 else 𝑄2. Impossible, because we must have

F [E′ [𝛿]] = F ′ [O′ [Δ′]].
(3) Assume O = F ′ [O′] where F ′ = 𝐿 • where 𝐿 is a value.

1. Assume E = •. Again, it suffices to show 𝑃
𝜏−→ 𝑃1.

a. Since 𝑃1 = 𝐿 O′ [Δ′] is an application term and 𝑃1 = E[𝛿], the definition of redexes

𝛿 implies O′ [Δ′] is a value. Hence O′ [Δ] ⇝ O′ [Δ′] must have been a (compute) step
where O′ = • and Δ is a redex that contracts into a value. Since O′ = •, it follows that
F ′ [O′] is an evaluation context. Hence F ′ [O′ [Δ]] 𝜏−→ F [O′ [Δ′]], i.e. 𝑃 𝜏−→ 𝑃1.

2. Assume E = F [E′] where F = • 𝑄 . Impossible, because F [E′ [𝛿]] = F ′ [O′ [Δ]] implies

𝐿 = E′ [𝛿]; there is no E′
such that E′ [𝛿] is a value.

3. Assume E = F [E′] where F = 𝐿′ •. Then the result follows by induction.

4. Assume E = F [E′] where F = if • then 𝑄1 else 𝑄2. Impossible, because we must have

F [E′ [𝛿]] = F ′ [O′ [Δ′]].
(4) Assume O = F ′ [O′] where F ′ = if • then 𝑅1 else 𝑅2.

1. Assume E = •. Again, it suffices to show 𝑃
𝜏−→ 𝑃1.

a. Since 𝑃1 = if O′ [Δ′] then 𝑅1 else 𝑅2, the step E[𝛿] 𝜏−→ E[𝛿 ′] can only be a (p-if) reduc-
tion. Hence O′ [Δ′] must be a value. Hence O′ [Δ] ⇝ O′ [Δ′] must have been a (compute)
step where O′ = • and Δ is a redex that contracts into a value. Since O′ = •, it follows
that F ′ [O′] is an evaluation context. Hence F ′ [O′ [Δ]] 𝜏−→ F [O′ [Δ′]], i.e. 𝑃 𝜏−→ 𝑃1.

2. Assume E = F [E′] where F = • 𝑄 . Impossible, because we must have F [E′ [𝛿]] =

F ′ [O′ [Δ′]].
3. Assume E = F [E′] where F = 𝐿 •. Impossible, because we must have F [E′ [𝛿]] =

F ′ [O′ [Δ′]].
4. Assume E = F [E′] where F = if • then 𝑄1 else 𝑄2. Then the result follows by induction.

(5) Assume O = B[O′] where B = ⊕q 𝑙 •. Impossible, because there is no E such that

B[O′ [Δ′]] = E[𝛿].
(6) Assume O = B[O′] where B = &q{𝑙 : •}. Impossible, because there is no E such that

B[O′ [Δ′]] = E[𝛿].
(7) Assume O = B[O′] where B = (𝜆𝑥 : 𝑇 . •) 𝐿 and 𝐿 is a value.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

Relax! The Semilenient Core of Choreographic Programming (Extended Version) 269:43

1. Then 𝑃 ⇝ 𝑃1
𝜇−→ 𝑃2 where 𝑃 = (𝜆𝑥 : 𝑇 . O′ [Δ]) 𝐿 and 𝑃1 = (𝜆𝑥 : 𝑇 . O′ [Δ′]) 𝐿 and

𝑃2 = O′ [Δ′] [𝑥 := 𝐿] and 𝜇 = 𝜏 .

2. Notice (𝜆𝑥 : 𝑇 . O′ [Δ]) 𝐿 𝜏−→ O′ [Δ] [𝑥 := 𝐿].
3. It suffices to show that O′ [Δ] [𝑥 := 𝐿] ⇝ O′ [Δ′] [𝑥 := 𝐿]; this follows from Lemma A.11.

(8) Assume O = B[O′] where B = (𝜆𝑥 : 𝑇 . •) 𝑅 and 𝑅 is not a value.

1. Then 𝑃 = (𝜆𝑥 : 𝑇 . O′ [Δ]) 𝑅 and 𝑃1 = (𝜆𝑥 : 𝑇 .O′ [Δ′]) 𝑅 and 𝑃2 = (𝜆𝑥 : 𝑇 .O′ [Δ′]) 𝑅′
for

some 𝑅′
. Hence 𝑃

𝜇−→ 𝑃3 and 𝑃3 ⇝ 𝑃2 where 𝑃3 = (𝜆𝑥 : 𝑇 .O′ [Δ]) 𝑅′
.

□

Proof (Soundness). First we handle the special case. Assuming N selectp,q 𝑙−−−−−−−→ N ′
and N⇝ ˜N

by (prune), we find ˜N ′
such that N ′ selectp,q 𝑙−−−−−−−→ ˜N ′

and N ′ ⇝ ˜N ′
by (prune):

(1) The transition N selectp,q 𝑙−−−−−−−→ N ′
implies N(p) = E[⊕q 𝑙 𝑃] and N(q) = E′ [&p{𝑙𝑖 : 𝑄𝑖 }𝑖∈I] for

some E, E′, 𝑃,I, {𝑄𝑖 }𝑖∈I where 𝑙 ∈ {𝑙𝑖 }𝑖∈I .
(2) The relation N⇝ ˜N implies

˜N(p) = E[⊕q 𝑙 𝑃
′] and N(q) = E′ [&p{𝑙 𝑗 : 𝑄 ′

𝑗 } 𝑗∈J] for some

𝑃 ′,J ⊆ I, {𝑄 ′
𝑗 } 𝑗∈J .

(3) It suffices to prove 𝑙 ∈ {𝑙 𝑗 } 𝑗∈J . Let �̃� be the normal form of𝑀 ; our approach is to prove that

�̃� take a selectp,q 𝑙 step.
(4) Recall

˜N⇝⇝ J𝑀K. By Lemma A.12,

q
�̃�

y
p =

˜E[⊕q 𝑙 𝑃
′] and

q
�̃�

y
q =

˜E′ [&q{𝑙𝑘 :
˜𝑄 ′
𝑘
}𝑘∈K] for

some
˜E, ˜E′, 𝑃 ′,K ⊆ J , { ˜𝑄 ′

𝑘
}𝑘∈K .

(5) By Lemmas 3.4, 4.1 and 4.4 there exist Ep,Δ such that �̃� = Ep [Δ]. By Lemmas 4.6 and 4.7,q
Ep [Δ]

y
p =

˜E[JΔKp] with JΔKp = ⊕q 𝑙 𝑃
′
and JΔKq = &p{𝑙𝑘 :

˜𝑄 ′
𝑘
}𝑘∈K . Hence Δ can only be

selectp,q 𝑙 𝑀 ′
for some𝑀 ′

.

(6) Since JΔKq = &p{𝑙𝑘 :
˜𝑄 ′
𝑘
}𝑘∈K and Δ = selectp,q 𝑙 𝑀 ′

, by definition of projection K must be

the singleton set {𝑙}.
(7) Since K = {𝑙} and K ⊆ J , we must have 𝑙 ∈ {𝑙 𝑗 } 𝑗∈J as desired.

Now for the general case. Assuming 𝑃
𝜇−→ 𝑃1 and 𝑃 ⇝ 𝑃2, we find 𝑃3 such that the following

diagram commutes:

𝑃2 = O[Δ′] 𝑃3

𝑃 = O[Δ] = E[𝛿] E[𝛿 ′] = 𝑃1

𝜇?

𝜇

We proceed by induction on the structure of E.
(1) Assume E = •.

1. Assume O = •.
a. Assume O[Δ] ⇝ O[Δ′] by the (prune) rule. Then 𝑃 has the form &q{𝑙𝑖 : 𝑄𝑖 }𝑖∈I . But

then 𝜇 could only be selectq,p 𝑙 , a case we already handled separately above.

b. Assume O[Δ] ⇝ O[Δ′] by the (commute) rule. Then 𝑃 has the form F [B[𝑃 ′]]. But
E = • implies 𝑃 is a redex, and there are no redexes of that form.

c. Assume O[Δ] ⇝ O[Δ′] by the (compute) rule. Then 𝜇 = 𝜏 and 𝑃2 = 𝑃1, so it suffices to

let 𝑃3 = 𝑃1.

d. Assume O[Δ] ⇝ O[Δ′] by the (bottom2) rule. Then 𝑃 = ⊥ ⊥ and 𝑃
𝜇−→ 𝑃1 by (bottom),

with 𝜇 = 𝜏 and 𝑃1 = ⊥. Likewise 𝑃 ⇝ 𝑃2 by (bottom2) with 𝑃2 = (𝜆𝑥 : ⊥. ⊥) ⊥. Hence
𝑃2

𝜇−→ 𝑃3 and 𝑃1 ⇝⇝ 𝑃3 with 𝑃3 = ⊥.
2. Assume O = B[O′] where B = ⊕q 𝑙 •. Then 𝜇 = selectp,q 𝑙 and 𝑃1 = 𝑄 and 𝑄 = O′ [Δ] ⇝

O′ [Δ′]. Hence 𝑃2
𝜇
−→ 𝑃3 and 𝑃1 ⇝ 𝑃3 where 𝑃3 = O′ [Δ′].

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

269:44 Dan Plyukhin, Xueying Qin, and Fabrizio Montesi

3. Assume O = B[O′] where B = &q{𝑙 : •}. As above.
4. Assume O = B[O′] where B = (𝜆𝑥 : 𝑇 . •) 𝑅 . Since O[Δ] is a redex 𝛿 , 𝑅 must be a value;

call that value 𝐿. Then 𝑃1 = O′ [Δ] [𝑥 := 𝐿] and 𝜇 = 𝜏 . We also have 𝑃2
𝜇
−→ 𝑃3 where

𝑃3 = O′ [Δ′] [𝑥 := 𝐿]. By Lemma A.11, 𝑃1 = 𝑃3.

5. Assume O = F [O′]. Impossible: since 𝑃 = E[𝛿] = 𝛿 is a redex, O′ [Δ] would have to be a

value. But there is no O′,Δ such that O′ [Δ] is a value.
(2) Assume E = F [E′] where F = • 𝑄 .

1. Assume O = •.
a. Assume O[Δ] ⇝ O[Δ′] by the (commute) rule. Then 𝑃 = Δ = F ′ [B[𝑅]] for some

F ′,B, 𝑅 . Proceed by case analysis on F ′
and B.

(1) Assume F ′ = • 𝑄 and B = ⊕q 𝑙 •. Then 𝜇 = selectp,q 𝑙 and 𝑃1 = F [𝑅] and 𝑃2 =

⊕q 𝑙 F [𝑅]. If 𝑃3 = F [𝑅], then 𝑃1 = 𝑃3 and 𝑃2
𝜇
−→ 𝑃3.

(2) Assume F ′ = • 𝑄 and B = &q{𝑙 : •}. Then 𝜇 = selectq,p 𝑙 and 𝑃1 = F [𝑅] and
𝑃2 = &q{𝑙 : F [𝑅]}. If 𝑃3 = F [𝑅], then 𝑃1 = 𝑃3 and 𝑃2

𝜇
−→ 𝑃3.

(3) Assume F ′ = • 𝑄 and B = (𝜆𝑥 : 𝑇 . •) 𝐿, where 𝐿 is a value. Then 𝜇 = 𝜏 and 𝑃1 =

F [𝑅 [𝑥 := 𝐿]] and 𝑃2 = (𝜆𝑥 : 𝑇 . F [𝑅]) 𝐿. Since 𝑥 ∉ fv(F), if 𝑃3 = F [𝑅 [𝑥 := 𝐿]]
then 𝑃1 = 𝑃3 and 𝑃2

𝜇
−→ (F [𝑅]) [𝑥 := 𝐿] = 𝑃3.

(4) Assume F ′ = • 𝑄 and B = (𝜆𝑥 : 𝑇 . •) 𝑅′
, where 𝑅′

is not a value. Then 𝑃 =

((𝜆𝑥 : 𝑇 .𝑅) 𝑅′) 𝑄 and 𝑃1 = ((𝜆𝑥 : 𝑇 .𝑅) 𝑅′′) 𝑄 for some 𝑅′′
and 𝑃2 = (𝜆𝑥 : 𝑇 .𝑅 𝑄) 𝑅′

.

Then 𝑃2
𝜇
−→ 𝑃3 and 𝑃1 ⇝ 𝑃3 where 𝑃3 = (𝜆𝑥 : 𝑇 . 𝑅 𝑄) 𝑅′′

.

(5) Assume F ′ = 𝐿 •. Then F ′ [B[𝑅]] = F [E′ [𝛿]] implies 𝐿 = E′ [𝛿]. Impossible, because

there is no such E′
.

(6) Assume F ′ = if • then 𝑅1 else 𝑅2. Impossible, since F ′ [B[𝑅]] = F [E′ [𝛿]].
b. Assume O[Δ] ⇝ O[Δ′] by the (prune) rule. Impossible, since O[Δ] = F [E′ [𝛿]].
c. Assume O[Δ] ⇝ O[Δ′] by the (compute) rule. Then 𝑃 = Δ is a redex, implying E′ [𝛿] is

a value, which is impossible.

d. Assume O[Δ] ⇝ O[Δ′] by the (bottom2) rule. Then E′ [𝛿] = ⊥, which is impossible.

2. Assume O = F ′ [O′] where F ′ = • 𝑅 . Then the result follows by induction.

3. Assume O = F ′ [O′] where F ′ = 𝐿 •. Impossible, because E′ [𝛿] cannot be a value 𝐿.
4. Assume O = B[O′] where B = (𝜆𝑥 : 𝑇 . •) 𝑅 . Impossible, because B[O′ [Δ]] = F [E′ [𝛿]]

implies E′ [𝛿] = 𝜆𝑥 : 𝑇 . O′ [Δ], and E′ [𝛿] cannot be a value.
5. The remaining cases are impossible, because we must have F ′ [O′ [Δ]] = F [E′ [𝛿]].

(3) Assume E = F [E′] where F = 𝐿 •. This case follows by the same arguments as the one

above.

1. Assume O = •. Proceed by case analysis on the transition O[Δ] ⇝ O[Δ′].
a. Assume O[Δ] ⇝ O[Δ′] by the (commute) rule. Then 𝑃 = Δ = F ′ [B[𝑅]] for some

F ′,B, 𝑅 . Proceed by case analysis on F ′
and B.

(1) Assume F ′ = 𝐿 • and B = ⊕q 𝑙 •. Then 𝜇 = selectp,q 𝑙 and 𝑃1 = F [𝑅] and 𝑃2 =

⊕q 𝑙 F [𝑅]. If 𝑃3 = F [𝑅], then 𝑃1 = 𝑃3 and 𝑃2
𝜇
−→ 𝑃3.

(2) Assume F ′ = 𝐿 • and B = &q{𝑙 : •}. Then 𝜇 = selectq,p 𝑙 and 𝑃1 = F [𝑅] and
𝑃2 = &q{𝑙 : F [𝑅]}. If 𝑃3 = F [𝑅], then 𝑃1 = 𝑃3 and 𝑃2

𝜇
−→ 𝑃3.

(3) Assume F ′ = 𝐿 • and B = (𝜆𝑥 : 𝑇 . •) 𝐿′, where 𝐿′ is a value. Then 𝜇 = 𝜏 and 𝑃1 =

F [𝑅 [𝑥 := 𝐿′]] and 𝑃2 = (𝜆𝑥 : 𝑇 . F [𝑅]) 𝐿′. Since 𝑥 ∉ fv(F), if 𝑃3 = F [𝑅 [𝑥 := 𝐿′]]
then 𝑃1 = 𝑃3 and 𝑃2

𝜇
−→ (F [𝑅]) [𝑥 := 𝐿′] = 𝑃3.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

Relax! The Semilenient Core of Choreographic Programming (Extended Version) 269:45

(4) Assume F ′ = 𝐿 • and B = (𝜆𝑥 : 𝑇 . •) 𝑅′
, where 𝑅′

is not a value. Then 𝑃 =

𝐿 ((𝜆𝑥 : 𝑇 .𝑅) 𝑅′) and 𝑃1 = 𝐿 ((𝜆𝑥 : 𝑇 .𝑅) 𝑅′′) for some 𝑅′′
and 𝑃2 = (𝜆𝑥 : 𝑇 .𝐿 𝑅) 𝑅′

.

Then 𝑃2
𝜇
−→ 𝑃3 and 𝑃1 ⇝ 𝑃3 where 𝑃3 = (𝜆𝑥 : 𝑇 . 𝐿 𝑅) 𝑅′′

.

(5) Assume F ′ = • 𝑄 . Impossible, since O[Δ] = F [E′ [𝛿]] would imply B[𝑅] = 𝐿.

(6) Assume F ′ = if • then 𝑅1 else 𝑅2. Impossible, since F ′ [B[𝑅]] = F [E′ [𝛿]].
b. Assume O[Δ] ⇝ O[Δ′] by the (prune) rule. Impossible, since O[Δ] = F [E′ [𝛿]].
c. Assume O[Δ] ⇝ O[Δ′] by the (compute) rule. Then 𝑃 = Δ is a redex, implying E′ [𝛿] is

a value, which is impossible.

d. Assume O[Δ] ⇝ O[Δ′] by the (bottom2) rule. Then 𝑃 = ⊥ E′ [𝛿] and 𝑃1 = ⊥ E′ [𝛿 ′] and
𝑃2 = (𝜆𝑥 : ⊥. ⊥) E′ [𝛿]. Hence 𝑃2

𝜇−→ 𝑃3 and 𝑃1 ⇝ 𝑃3 with 𝑃3 = (𝜆𝑥 : ⊥. ⊥) E′ [𝛿 ′].
2. Assume O = F ′ [O′] where F ′ = • 𝑅 . Then the two steps commute: 𝑃2

𝜇
−→ 𝑃3 and 𝑃1 ⇝ 𝑃3

where 𝑃3 = O′ [Δ′] E′ [𝛿 ′].
3. Assume O = F ′ [O′] where F ′ = 𝐿 •. Then the result follows by induction.

4. Assume O = B[O′] where B = (𝜆𝑥 : 𝑇 . •) 𝑅 . Then 𝑃 = (𝜆𝑥 : 𝑇 . O′ [Δ]) E′ [𝛿] and the two
steps commute: 𝑃2

𝜇
−→ 𝑃3 and 𝑃1 ⇝ 𝑃3 where 𝑃3 = (𝜆𝑥 : 𝑇 . O′ [Δ′]) E′ [𝛿 ′].

5. The remaining cases are impossible, because we must have F ′ [O′ [Δ]] = F [E′ [𝛿]].
(4) Assume E = F [E′] where F = if • then 𝑄1 else 𝑄2.

1. Assume O = •. Since 𝑃 is an if-expression, the transition O[Δ] ⇝ O[Δ′] cannot be a
(prune), (commute), or (bottom2) step; it must be a (compute) step. In particular, we must

have Δ ↦→ Δ′
by a (p-if) reduction, and therefore 𝑃 = if 𝑐 then 𝑄1 else 𝑄2 for some 𝑐 . But

there is no E′
such that E′ [𝛿] = 𝑐 , so this case is impossible.

2. Assume O = F ′ [O′] where F ′ = if • then 𝑅1 else 𝑅2. Then the result follows by induction.

3. The remaining cases are impossible, because we must have F ′ [O′ [Δ]] = F [E′ [𝛿]].
□

Received 2025-02-27; accepted 2025-06-27

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 269. Publication date: August 2025.

	Abstract
	1 Introduction
	2 Networks
	2.1 Motivating Choreographies
	2.2 Authentication Explained

	3 Choreographies
	3.1 Evaluation Strategies
	3.2 Lenient Semantics
	3.3 Semilenient Semantics
	3.4 Properties of

	4 Projection
	4.1 The Projection Function
	4.2 Properties of Projection
	4.3 The Projection Theorem

	5 Related Work
	6 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Properties of
	A.2 Basic Properties of Projection

