
FAULT-TOLERANT AND FAULT-RECOVERING
GARBAGE COLLECTION FOR THE ACTOR MODEL:

A COLLAGE-BASED APPROACH

BY

DAN PLYUKHIN

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois Urbana-Champaign, 2024

Urbana, Illinois

Doctoral Committee:

Professor Emeritus Gul Agha, Chair
Professor Indranil Gupta
Assistant Professor Tianyin Xu
Associate Professor Philipp Haller, KTH Royal Institute of Technology

Abstract

An actor garbage collector (actor GC) is a tool for automatically identifying actors that are safe
to delete, and reclaiming their resources. Actor GC could be particularly useful in distributed ap-
plications, because programmers have difficulty reclaiming resources after faults such as crashed
nodes or dropped messages. Unfortunately, faults are a pain point in existing actor GCs: in ex-
isting approaches, an actor on a crashed node with a reference to an actor on a healthy node
will prevent the healthy actor—and its references—from ever being garbage collected. Moreover,
existing GC algorithms have poor scalability in a distributed systems. This is because of the
synchronization and message overhead they introduce by requiring causal delivery, or by intro-
ducing a large number of control messages. For these reasons, it has not been practical to add
actor GC to popular frameworks like Akka and Erlang.

This thesis explores an emerging technique for actor GC, dubbed the collage-based approach.
Collage-based GCs are capable of high performance because they do not dictate when an ac-
tor should participate in garbage collection, and by design they naturally make progress with
only partial information. The thesis presents two collage-based GCs: PRL and CRGC. Both GCs
are provably correct and impose no locks, memory barriers, or message ordering requirements.
PRL uses distributed reference listing to collect acyclic garbage and allows node-local garbage
collectors to detect distributed cyclic garbage via a lightweight gossip protocol. We then use in-
sights from PRL to develop CRGC: the first actor GC capable of recovering from crashed nodes
and dropped messages. We have formalized CRGC in TLA+ and implemented CRGC in Akka.
Preliminary evaluation shows that CRGC imposes little overhead in practice and is capable of
collecting actors that become garbage caused by crashed nodes.

ii

For my parents, of course

iii

Acknowledgments

The research for this thesis was conducted during my time at the University of Illinois and
the University of Southern Denmark. My Ph.D. advisor, Gul Agha, developed the elegant formal-
ism of the actor model and patiently shepherded me along the strange, meandering path to the
completion of this thesis. I couldn’t imagine a better supervisor than Gul, and if the reader can
understand anything at all in this document, it is thanks to his guidance. I also warmly thank my
supervisor, Fabrizio Montesi, at SDU for being open to this research and allowing it to incubate
in Odense. I look forward to many more years of enthusiastic collaboration.

Implementing CRGC was challenging. I could not have done it without Charles Kuch and
Jerry Wu, who spent a semester implementing PRL with me when they were undergraduates.
The garbage collector presented in this thesis is heavily inspired by the details we uncovered
during the development of that prototype. I also appreciate Patrik Nordwall for taking time out
of the workday to help a lowly student understand Akka’s Artery and Downing systems.

Many researchers have shaped the content of this thesis. The members of OSL—Dipayan
Mukherjee, Atul Sandur, Kirill Mechitov, YoungMin Kwon, and Laine Taffin Altman—gave feed-
back to many iterations of this work. The members the ACP Section have all been wildly encour-
aging and curious—it’s been a joy to be a part of that community. The attendees and reviewers
of the AGERE! workshop, where I presented the first version of this work, were also very en-
couraging and gave me perspective. The delightful term “shadow graph” is stolen from a short
conversation with Tobias Wrigstad at AGERE!
Finally, I thank my friends, family, and members of my community for their support: Matt,

Alex, Kat, Lira, Sergei, Jamie, Mary Beth, Pedro, Rob, Arpan, Dan, Micky, Lovro, Valentino, Eva,
Robert, Jonas, Alexey, and the WEFT 90.1 FM community radio station for East Central Illinois.
And of course, I thank Mimi Hutchinson: the first person to show interest in my research, and
the one who patiently collected the garbage left in its wake.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 THE ACTOR MODEL . 4
2.1 Actors . 4
2.2 Actor Garbage . 5

CHAPTER 3 RELATED WORK . 9
3.1 Fault Tolerance and Fault Recovery . 9
3.2 Acyclic GCs . 11
3.3 Cyclic GCs . 12

Part I Coordination-Free Actor GC . 17

CHAPTER 4 PROACTIVE REFERENCE LISTING . 19
4.1 Overview . 19
4.2 Model . 24
4.3 Basic Properties . 30
4.4 Garbage . 31
4.5 Chain Lemma . 32

CHAPTER 5 QUIESCENCE DETECTION . 35
5.1 Consistent and Finalized Snapshots . 35
5.2 Maximal Finalized Subsets . 42
5.3 Cooperative Garbage Collection . 46

Part II Fault-Recovering Actor GC . 52

CHAPTER 6 FAULT MODEL . 54
6.1 Nodes . 55
6.2 Monitoring . 57
6.3 Sticky Actors and Timeouts . 59
6.4 Configurations and Executions . 59
6.5 Faulty Execution Paths . 60
6.6 Actor Garbage . 62

v

TABLE OF CONTENTS

CHAPTER 7 FAULT-RECOVERING ACTOR GC . 69
7.1 The Collage-Based Approach . 70
7.2 Static Topologies . 71
7.3 Dynamic Topologies . 76
7.4 Sticky Actors and Monitoring . 85
7.5 Dropped Messages and Exiled Nodes . 88
7.6 Shadow Graphs and Undo Logs . 101

CHAPTER 8 IMPLEMENTATION . 109
8.1 Overview . 109
8.2 Diary Entries . 110
8.3 Shadow Graphs and Delta Graphs . 112
8.4 Ingress and Egress Actors . 113

CHAPTER 9 EVALUATION . 114
9.1 Savina Benchmarks . 114
9.2 RandomWorkers: A Configurable GC Benchmark 119

CHAPTER 10 CONCLUSION . 124

REFERENCES . 126

APPENDIX A TLA+ SPECIFICATIONS . 132
A.1 The Fault Model . 132
A.2 Common Definitions . 140
A.3 The Static Model . 142
A.4 The Dynamic Model . 145
A.5 The Monitors Model . 150
A.6 The Exile Model . 155
A.7 The Shadows Model . 167
A.8 The UndoLogs Model . 169

vi

1

Introduction

Distributed systems consist of processes sharing a limited pool of resources. These resources
could be containers, segments of memory, slices of CPU time, or file handles. The challenge
of distributed resource management is to programmatically detect when resources are no longer
needed by one part of the application so they can be reclaimed for use in another part of the
application.

Figure 1.1 depicts a resourcemanagement problem based on theHadoop YARN architecture [1].
In Figure 1.1a a node called the Application Master begins by assigning a task to a specific con-
tainer. Once the task is completed, the container needs to be allocated to another task—but only
after the Application Master and the distributed storage service have finished reading the results
from the container. This problem is complicated by the fact that distributed systems have faults:
messages might be dropped and remote nodes might fail unexpectedly at any time. Figure 1.1b
shows one such case, where the Application Master failed before the protocol could complete.
Programmers must not only anticipate such cases, but also choose a correct action to take. In this
case, choosing to reclaim the container immediately could lead to an error if some process tries
to access the task’s results in the future. On the other hand, choosing to never reclaim the con-
tainer would result in a resource leak. For safety and performance, programmers need to carefully
determine the perfect moment to reclaim every resource.

We investigate the problem formally using the actor model of concurrency [3]. In the actor
model, reactive processes known as actors execute concurrently and communicate by sending
asynchronous messages to other actors. Actors encapsulate resources, so any part of the applica-
tion needing the resourcemust do so by sending asynchronousmessages to the enclosing actor. In
the example above, we would encapsulate the container resource within a dedicated Container

actor. Encapsulating resources this way has the benefit of controlling concurrent access (only
the enclosing actor can directly use the resource) and simplifying resource cleanup (terminating
the enclosing actor causes the resource to be reclaimed). The actor abstraction is widely used in
industry; actor frameworks have been used to build NoSQL databases [4, 5], reactive streaming

1

CHAPTER 1. Introduction

(a) Non-faulty execution (b) Faulty execution

Figure 1.1: Two possible executions of a task commit protocol, based on Hadoop YARN [2].

services [6, 7], fault-tolerant message brokers [8], high-throughput web servers [9], low-latency
financial applications [10], and scalable machine learning applications [11].

The actor model reduces the problem of distributed resource management to the problem of
distributed actor garbage collection. Automatic actor garbage collectors (called actor GCs for
short) [10, 12, 13, 14, 15, 16, 17, 18] can exploit structural properties of actor systems to decide
when an actor is safe to terminate, thereby releasing its resources back to the system. In practice,
programmers can use automatic actor GC in two ways:

1. Entrusting all resource management to the GC. This allows programmers to remove all re-
source management logic from their programs and also gives programmers more freedom
in how they design systems.

2. Using automatic GC to catch bugs. In systems where explicit resource management is es-
sential, actor GC can be used to detect resource leaks [19].

Despite the potential benefits, automatic actor GC is not provided by either of the two most
popular actor frameworks, Akka and Erlang [20]. Instead, programmers are required to terminate
actors manually. No study has yet been conducted on howmany bugs could be prevented if these
frameworks did provide actor GC—but a recent survey of Akka actor framework bugs reveals
that manual actor termination does cause race conditions and explicit lifecycle bugs, which have
a prevalence of 14.5% and 12.4% in the corpus, respectively [20].

2

CHAPTER 1. Introduction

Existing actor GCs have two limitations that prevent them from being used in popular actor
frameworks:

1. Performance: Many actor GCs demand features, such as causal delivery [10] or exactly-once
delivery [12], that popular frameworks cannot provide for performance reasons. Other GCs
impose overhead through too many control messages [18] or untimely GC pauses [13].

2. Fault recovery: No actor GC so far is capable of detecting garbage produced by faults, such
as the container in Figure 1.1.

The latter condition is particularly important, since it leaves themost difficult problem—reasoning
about unexpected failures—up to the programmer, negating many of the benefits an actor GC
could have.

Historically, most actor GCs have used a top-down approach, driven by the garbage collector.
In top-down approaches, the garbage collector computes a consistent global snapshot [21] by col-
lecting snapshots of each actor’s local state. To ensure consistency (or approximate consistency)
between the local snapshots, actors synchronize with one another using memory barriers [13] or
message-passing protocols [12]. These synchronization mechanisms can be expensive and tend
to interact poorly with distributed failures, such as dropped messages or crashed nodes.

This thesis develops an alternative, called the collage-based approach, which builds on the
actor GC introduced by Clebsch and Drossopoulou [10]. In the collage-based approach, actors
can send local snapshots to the garbage collector at any time. The local snapshots that a garbage
collector has received so far form a collage, which is not necessarily consistent or global. The
key idea of collage-based approaches is for the garbage collector to identify subsets of the collage
that are consistent and to identify garbage actors within those subsets. The thesis improves
on the Clebsch-Drossopoulou collector by removing the need for causal message delivery and
centralized GC, and by recovering from crashed node and dropped message failures.

Chapter 2 gives an overview of the actor model and actor garbage; in particular, the chapter
introduces quiescent garbage, which is the focus of this thesis. Chapter 3 surveys prior work in
actor garbage collection. Part I shows how the collage-based approach can be combined with ref-
erence listing to collect quiescent garbage without relying on shared memory or causal delivery
guarantees. Part II shows how a simplified version of the previous part can be developed into
fault-recovering actor GC, and evaluates an implementation in Akka; eager readers with a little
knowledge about actors can jump directly to Part II.

3

2

The Actor Model

2.1 Actors

Actors [3, 22] are sequential processes that communicate by message-passing. Each actor exe-
cutes a Turing-complete script called its behavior, which dictates what actions to perform when
a message is received. These actions include:

• Spawning new actors;
• Asynchronously sending messages to other actors;
• Performing local computation;
• Performing effects, such as file I/O; and
• Changing the actor’s behavior.

Notably, actors do not use locks or shared memory; all communication and coordination is
done via asynchronous message-passing.1

Figure 2.1 depicts a trivial actor program, using syntax based on theAkka actor framework [26].
When the program is started, a PingActor actor is spawned (line 23) and sent a Start mes-
sage containing the integer 100. When the PingActor receives the message (line 5), it spawns a
PongActor and thereby obtains a reference to that actor. It uses the reference to send PongActor
a Ping message (line 8), containing a reference to the PingActor itself. When the PongActor

receives the message (line 17), it prints a message to the console and sends a reply back to the
PingActor. The actors proceed to send messages back and forth for 99 more iterations.

A detailed exposition of actors can be found in [3], with a formalization in [25]. For our pur-
poses, there are three important properties to understand:

The shared-nothing principle Actors do not (observably) share state. This property ensures
that two concurrently executing actors cannot interfere with one another and only communicate

1For performance reasons, programmers often do implement behaviors that use shared memory [23, 24]. These
programs can still be considered “faithful” to the actor model, as long as the behaviors are observationally equiva-

lent [25] to behaviors that do not use such features.

4

CHAPTER 2. The Actor Model

1 class PingActor extends Actor:
2 var pingsLeft: Int
3 var pong: ActorRef
4 def receive =
5 case Start(count) =>
6 pingsRemaining = count
7 pong = spawn(PongActor())
8 pong ! Ping(self)
9 pingsLeft = pingsLeft - 1
10 case Pong() =>
11 println("PING!")
12 if pingsRemaining >= 0 then
13 pong ! Ping(self)
14 pingsLeft = pingsLeft - 1

15 class PongActor extends Actor:
16 def receive =
17 case Ping(replyTo) =>
18 println("PONG!")
19 replyTo ! Pong()
20

21 // The system starts here
22 def main =
23 val ping = spawn(PingActor())
24 ping ! Start(100)

Figure 2.1: Akka-style pseudocode for a pair of actors sending messages back and forth. The
“bang” operator a ! m is used to asynchronously send message m to the actor that has address a.

with one another via message-passing. It also ensures that actors interact with local actors (actors
residing on the same node) the sameway they dowith remote actors (those residing on a different
node).

The event-driven principle At any time, an actor is either busy (performing actions to pro-
cess a message) or idle (waiting for a message). As long as an actor is idle, it does not have any
effect on the rest of the system.

Memory-safety For actor 𝑎 to send a message to actor 𝑏, the sender must have a reference

(or mail address) to the recipient. Such a reference could only have been obtained in one of two
ways: either 𝑎 spawned 𝑏, or 𝑎 received a reference to 𝑏 in a message from some other actor.
References cannot be produced “from thin air”; this is analogous to the notion of memory-safety
in programming languages.

2.2 Actor Garbage

Garbage in the actormodel (i.e. actor garbage) is quite different from garbage in sharedmemory
concurrency models (i.e. object garbage). In shared memory models, an object is garbage if it can
never be accessed by a thread. Object GCs can therefore detect object garbage by first “marking”
all the objects that are reachable by any thread, then reclaiming all the objects that were not
reachable [27, 28]. But this is not sufficient for actor garbage. Each actor is, conceptually, its
own thread of control. Thus, an actor can still send messages and perform effects, regardless
of whether it is reachable from any other actor, as long as it has undelivered messages left to

5

CHAPTER 2. The Actor Model

node 3

idle

busy

a acquainted with ba b

a sent message to ba b

m(n
)

root

pure
a b c

d e

f g h

i j

k s

w n

p

t

q rm(k)

node 2

node 1

Figure 2.2: A global snapshot of an abstract actor system.

process.
To make a precise definition of actor garbage, we need the following terminology:

Configurations A configuration 𝜅 describes the global state (i.e. a consistent cut [21]) of an
actor system during execution. A configuration consists of a set of nodes, a set of actors, and a
set of undelivered messages. Each actor is located at a particular node. Each message consists
of a payload (the contents of the message) and a recipient (the address of the recipient actor).
Figure 2.2 depicts an example configuration.

Unblocked actors An actor 𝑎 is unblocked in 𝜅 if it is busy (i.e. processing a message) or there
is an undelivered message to 𝑎 in 𝜅. In Figure 2.2, actors 𝑏, 𝑑, 𝑓 , 𝑝, 𝑞, 𝑟 are unblocked and the rest
are blocked.

Pure actors An actor is pure if it never performs effects (such as file I/O) and only spawns
other pure actors. Pure actors can only affect the world by sending messages to impure actors.
In Figure 2.2, actors 𝑏, 𝑐, 𝑑, 𝑞, 𝑟, 𝑡 are pure and the rest are impure.

Root actors A root actor is one that must never be garbage collected, for example because it
responds directly to user input. In Figure 2.2, root actors are denoted as triangles.

6

CHAPTER 2. The Actor Model

Potential acquaintances We say that 𝑎 potentially has a reference to 𝑏 in 𝜅 if either:
• 𝑎 has a reference to 𝑏 in 𝜅; or
• 𝑎 has an undelivered message in 𝜅 that contains a reference to 𝑏.

If 𝑎 potentially has a reference to 𝑏, then we say 𝑏 is a potential acquaintance of 𝑎 and 𝑎 is a
potential inverse acquaintance of 𝑏. Figure 2.2 has many examples of potential acquaintances. In
particular, 𝑘 and 𝑠 are potential acquaintances of one another; 𝑓 potentially has a reference to 𝑛;
and 𝑝 potentially has a reference to 𝑘 .

Potential reachability Actor 𝑎 can potentially reach actor 𝑐 in 𝜅 if either:
• 𝑎 potentially has a reference to 𝑐 in 𝜅, or
• 𝑎 potentially has a reference to some actor 𝑏 that can potentially reach 𝑐 in 𝜅.

In Figure 2.2, 𝑒 can potentially reach 𝑏, 𝑐, 𝑑, ℎ, 𝑗 , and 𝑤 . Also notice that 𝑝 can potentially reach
both 𝑘 and 𝑠 .

Whereas object garbage is defined in terms of reachability from a thread, actor garbage is de-
fined in terms of potential reachability by certain kinds of actors. We can define three main kinds
of actor garbage below.

Acyclic garbage A non-root actor is acyclic garbage if it is blocked and has no potential inverse
acquaintances. These actors are doomed to remain idle forever, due to the actor properties in
Section 2.1:

1. Since actors arememory-safe, acyclic garbage actors can never become unblocked (no actor
can ever send it a message).

2. Since actors are message-driven, acyclic garbage actors will remain idle forever and never
affect the system (idle actors cannot spontaneously become busy).

In Figure 2.2, actors 𝑎 and 𝑒 are acyclic garbage but 𝑓 and 𝑛 are not. This is because 𝑓 has an
undelivered message and 𝑓 will have a reference to 𝑛 once that message is delivered.

Quiescent garbage A non-root actor is quiescent if it is blocked and only potentially reach-
able by other quiescent actors. This generalizes the definition of acyclic garbage to include cyclic
garbage such as 𝑒, ℎ, 𝑗,𝑤 in Figure 2.2. In quiescent garbage, each actor is permanently idle be-
cause no other actor can ever send it a message. Note that actors 𝑘, 𝑠 are not quiescent garbage
in Figure 2.2 (even though they are both blocked) because there is an unblocked actor 𝑝 that po-
tentially has a reference to 𝑘 . Quiescent garbage arises when actors form cyclic data structures
such as rings, doubly-linked lists, and supervision hierarchies [29].

7

CHAPTER 2. The Actor Model

Disconnected garbage A non-root actor is disconnected garbage if it is (1) pure and (2) can
only potentially reach or be potentially reached by other disconnected actors. In Figure 2.2,
actors 𝑞, 𝑡, 𝑟 are disconnected garbage. Notice that 𝑏, 𝑐, 𝑑 are not disconnected garbage because
the simple garbage actor 𝑒 has a reference to them. However, they will become disconnected
garbage if 𝑒 is garbage collected. Disconnected garbage can arise from a ring of pure actors
that periodically send heartbeat messages to one another for fault-tolerance; the actors are never
blocked, but they will never perform any useful work.

Actor garbage evidently exhibits more structure than ordinary object garbage. The story be-
comes even more interesting when we incorporate faults into the model. Briefly: notice that in
Figure 2.2, the actors 𝑘, 𝑠 are not quiescent garbage, but they would become garbage if message
𝑚(𝑘) is dropped by the network. Likewise, if node 1 crashes, then the non-garbage actors 𝑔, 𝑖
both become quiescent garbage. No existing actor GC is capable of detecting 𝑔, 𝑖 as garbage after
a node failure.

The challenge of distributed actor GC is three-fold:
1. Obtaining a consistent view of the nodes without pausing them;
2. Obtaining a consistent view of the network without too many control messages; and
3. Minimizing the amount of data that nodes need to exchange to detect distributed garbage.

Chapter 3 describes prior strategies to achieve these goals, which use techniques derived from
distributed snapshot algorithms [30] and shared memory garbage collection [28].

8

3

Related Work

Tables 3.1 to 3.3 list the major approaches to actor GC, along with their relative strengths and
weaknesses. These approaches can be organized in the following way:

1. Acyclic GCs: Simple approaches that only detect acyclic garbage.
2. Cyclic GCs: Approaches that can collect cyclic garbage. They can be grouped according to

how they ensure the garbage collector’s view of the system is consistent:
(a) Snapshot-based GCs: Approaches that require a consistent global snapshot of the dis-

tributed system before garbage can be collected.
(b) Trace-based GCs: Approaches that use memory barriers [27, 28, 34] to overapproxi-

mate the set of live actors on a node.
(c) Collage-based GCs: Approaches that record actor-local snapshots without coordina-

tion and subsequently identify which of the snapshots are consistent with one an-
other.

It should be noted that all these GCs were implemented in incomparable actor frameworks,
often with limited empirical evaluation, and several of the implementations have been lost to
history. This unfortunately makes it impossible to rigorously compare the performance of the
different approaches.

3.1 Fault Tolerance and Fault Recovery

A central theme in this thesis is how to collect distributed garbage despite unpredictable delays
(slow nodes and network partitions) and faults (crashed nodes and dropped messages).

Message
order

Fault-
tolerant?

Message-loss
recovery?

Crashed-node
recovery?

Reference counting [31, 32] FIFO ✓ ✗ ✗

Reference listing [18, 33] unordered ✓ ✗ ✗

Table 3.1: Comparison of acylic actor GCs.

9

CHAPTER 3. Related Work

Proof? Barrier-
free?

Fault-
tolerant?

Dropped
message
recovery?

Crashed-
node

recovery?
Venkatasubramanian et al [12] ✓ ✓ ✗ ✗ ✗

Puaut [14] ✗ ✗ partly ✗ ✗

Kafura et al [15] ✗ ✗ ✗ ✗ ✗

Vardhan-Agha [17] ✓ ✗ ✓ ✗ ✗

Table 3.2: Comparison of actor GCs that can collect both quiescent and disconnected garbage.
All assume FIFO message delivery.

Message
order Proof? Barrier-

free?
Fault-

tolerant?

Dropped
message
recovery?

Crashed-
node

recovery?
Kamada et al [13] none ✗ ✗ ✗ ✗ ✗

Wang-Varela [18] none ✗ ✗ ✓ ✗ ✗

Clebsch-Drossopoulou [10] causal ✓ ✓ ✓ ✗ ✗

PRL (Part I) none ✓ ✓ ✓ ✗ ✗

CRGC (Part II) none ✓ ✓ ✓ ✓ ✓

Table 3.3: Comparison of approaches that collect quiescent garbage.

The term “fault-tolerant” is used inconsistently in literature on distributed garbage collec-
tion [18, 35, 36, 37]. Some authors use it to mean that some garbage can be detected despite
faults. Others use it to mean a stronger property, where actors can be garbage collected if they
are only potentially reachable by actors on crashed nodes. We propose the following distinction:

An actor GC is fault-tolerant if it can collect some distributed garbage despite faults.
Dropped messages and crashed nodes may cause certain actors to never be garbage
collected.

An actor GC is fault-recovering if faults can cause actors to become garbage and be
garbage collected. For example, actors that are never garbage in non-faulty execu-
tions may become garbage because all their potential inverse acquaintances have
failed.

In this terminology, reference counting and reference listing are fault-tolerant because an actor
can be garbage collected if all its past inverse acquaintances are on non-faulty nodes. In order
to make such a GC fault-recovering, the runtime must detect and deactivate references held by
faulty nodes [36].

Several actor GCs that can detect cyclic garbage are not fault-tolerant [12, 13, 15]. These GCs
require (approximate) snapshots of every node in the system. If a node 𝑁 does not take a local

10

CHAPTER 3. Related Work

Figure 3.1: Example of a race condition in naïve reference counting. Circles represent actors and
“rc” is their corresponding reference count. Solid arrows represent existing references, while
dashed grey arrows represent sent messages.

snapshot, the GC cannot rule out the possibility that 𝑁 has references to every actor on every
other node.

Several actor GCs that are not fault-tolerant can still collect local garbage despite any number
of faulty nodes [13, 15]. These GCs do so by computing node-local approximate snapshots that
determine whether an actor’s address could leaked to an outside node. Actors that are only
potentially reachable by local actors can therefore be garbage collected despite any number of
failures. We do not consider such a GC to be fault-tolerant because any GC can be trivially
modified to detect all local garbage despite failures.

Part I of this thesis introduces the first fault-tolerant cyclic actor GC that does not require
message ordering, special actor topologies, or memory barriers. Part II builds on the previous
part to make the first fault-recovering cyclic actor GC.

3.2 Acyclic GCs

Acyclic GCs are based on one of two related concepts: reference counting and reference list-

ing [37]. Both approaches allow actors to garbage collect themselves when they detect that no
other actor has a reference to them. Reference counting approaches achieve this by storing an
integer at each actor, which is asynchronously incremented or decremented when new refer-
ences are created or destroyed. In contrast, reference listing approaches achieve the same effect
by maintaining a list of actors that have references.
A naive reference counting approach requires causal message delivery to prevent race condi-

tions (see Figure 3.1). Optimizations such as weighted reference counting [31, 32] and indirect
reference counting [38] eliminate the need for “increment” messages and can thereby remove the
causal order requirement.

Reference listing imposes higher memory overhead than reference counting, but can be easier

11

CHAPTER 3. Related Work

to integrate with fault-tolerance and fault-recovery protocols. Birrell’s reference listing [33, 39]
requires a blocking step, preventing actors from using references until they have notified the
target about their reference. Wang and Varela’s reference listing [18] removes this restriction, but
requires a significant number of acknowledgment messages: addingWang and Varela’s reference
listing to an existing system adds 2–5 times as many messages—and even more when messages
contain multiple references.

One benefit of reference tracking is that actors can be collected almost as soon as they become
garbage. However, this only applies if “decrement” messages are sent as soon as their correspond-
ing references are no longer needed. Certain languages, such as Rust and Pony, can ensure that
references are garbage collected promptly and thereby trigger an automatic “decrement” mes-
sage. Runtimes with tracing garbage collectors (such as the JVM or BEAM) do not provide this
guarantee.

Another benefit of reference tracking is that it tolerates some faults; the only actors that can
prevent an actor 𝑎 from being garbage collected are the actors that actually hold references to 𝑎.
However, dropped “decrement” messages can permanently prevent an actor from being collected,
even though no other actor has a reference to it [37].

3.3 Cyclic GCs

To collect a cycle of actor garbage, actor GCs must first inspect the local state of each actor in
the cycle. Conceptually, we can understand this as the GC computing a snapshot of each actor
in the cycle, and combining the snapshots into a collage. The GC then inspects the collage to
determine whether the actors are indeed garbage.

3.3.1 Snapshot-Based GCs

In snapshot-based GCs, the garbage collector ensures that the collage is consistent [21] or
approximately consistent (thus forming a “global snapshot”) so that live actors are not misdiag-
nosed as garbage. Venkatasubramanian et al introduced the first distributed actor GC that does
not require pauses [12, 40, 41]. The GC requires actors to be arranged in a hierarchy of clusters,
through which all messages are routed. The special properties of this hierarchy make it possible
to compute a Chandy-Lamport-like global snapshot at the actor-level (rather than the node-level
as in [15]). After computing the global snapshot, each actor would obtain a list of all its inverse
acquaintances at the time of the snapshot. The actors would then perform a decentralized mark-
and-sweep phase, passing messages to their acquaintances and inverse acquaintances so as to
mark all the non-garbage actors. The primary limitations of this GC are the restrictive assump-

12

CHAPTER 3. Related Work

tions about actor hierarchies and the large number of messages that need to be exchanged.
In Chapter 2 we established that actor garbage is different from object garbage, so one can-

not use “reachability from the root actors” to detect actor garbage. An alternative approach is
to maintain a set of extra edges and nodes in the actor reference graph, making it so that actor
garbage coincides with regular garbage; we call these actor-to-object GCs. Actor-to-object GCs
were first proposed by Vardhan and Agha [17, 42]. Independently, Dickman sketched a simi-
lar approach but did not implement it or prove its correctness [16]. Subsequently, Wang et al
presented an optimization that required fewer additional edges and no additional objects; this
experimentally led to shorter graph traversal times [43].

One might assume that this approach would allow an actor framework, implemented on a
garbage-collected runtime such as the JVM, to repurpose the existing object GC as an actor GC.
This is not necessarily the case. Vardhan’s original implementation was unable to use the JVM
GC for actors because the ActorFoundry framework implemented actors as threads, which do
not fall under the purview of the JVM GC [42]. Thus, in practice, distributed actor-to-object GCs
still require a complete implementation of a distributed object GC [44].

Interestingly, it is possible to design a non-distributed actor framework that exploits the under-
lying runtime’s garbage collector. Desell and Varela designed the SALSA Lite actor framework
in such a way that quiescent actor garbage coincides with object garbage [45]. Unfortunately, it
is unclear how their approach would generalize to distributed systems.

A fundamental limitation of actor-to-object GCs is that they require a collage to be a priori

consistent in order to determine which actors are blocked and what their potential inverse ac-
quaintances are. Computing such a snapshot can introduce high overhead, high pause times, and
brittleness to crash faults.

3.3.2 Trace-Based GCs

Trace-based GCs are garbage collectors designed for use with the actor model that use tech-
niques from concurrent tracing garbage collection [27, 28, 34]. All of the past approaches are
mark-and-sweep GCs, detecting actor garbage by first marking the actors that might not be
garbage and then collecting unmarked actors.

Kamada et al implemented an actor GC that only detects quiescent garbage [13]. Each node
needs to pause actor execution to mark all the unblocked actors and root actors. The actors
are then unpaused and execute concurrently while the GC marks them. Write barriers [27, 28,
34] are used to ensure that all non-garbage actors get marked. Whenever the GC encounters a
reference to an external actor, it sends a “mark” message to the remote node, causing the external
actor to become marked. Once all local marking has completed and all “mark” messages have

13

CHAPTER 3. Related Work

node 3

idle

busy

a acquainted with ba b

a sent message to ba b

root

pure
a b c

d

e f

g h

i j

node 2

node 1

Figure 3.2: A snapshot of an actor system where failures may prevent distributed garbage collec-
tion.

been delivered, only the garbage actors will remain unmarked. A global termination detection
algorithm [46] is used to detect that all “mark” messages have been delivered.

A fundamental limitation of Kamada et al’s approach is that distributed GC requires coopera-
tion from every node in the cluster. In Figure 3.2, 𝑓 , ℎ, 𝑖 are garbage but they could not be collected
without information from node 1, because some unblocked actor on node 1 might have a refer-
ence to one of those actors. Consequently, one slow node can prevent all distributed garbage
from being collected.

Puaut proposed an algorithmwith three parts [14]. First, nodes compute an approximate snap-
shot of their local actors using an incremental tracing technique. Second, in order to check that
node-local snapshots are consistent with one another, each node maintains a vector clock and
associates its local snapshot with a vector timestamp. Third, in order to compute a snapshot of
the references in transit between nodes, each node tracks the set of references it has sent and
received from the network. All this information is sent to a centralized GC process, which can
detect distributed garbage only if the node-local snapshots happen to be consistent with one an-
other. A key insight in Puaut’s approach is that, when the network is FIFO, nodes can recover
from message loss by examining the references they have sent/received and inferring which ref-
erences were dropped.

Kafura et al proposed a similar algorithm to that of Puaut, but removed the centralized GC
process and the need for vector timestamps [15]. They proposed using the Chandy-Lamport

14

CHAPTER 3. Related Work

algorithm to coordinate when nodes should compute their local snapshots and also to determine
the state of the network. Nodes would then perform a decentralized worklist algorithm to mark
all non-garbage actors in the cluster. This approach shares the limitation of Kamada et al, in
which one slow node can prevent all distributed GC.

Wang and Varela proposed the first truly fault-tolerant object-to-actor GC, capable of detecting
distributed actor garbage despite slow nodes [18, 47]. They achieved this by associating each
actor with a reference listing; in Figure 3.2, this would allow nodes 2 and 3 to determine that
𝑓 , ℎ, 𝑖 are not referenced by any actor in node 1, making it safe to garbage collect those actors.
However, their reference listing scheme requires large numbers of acknowledgment messages
for each application message, leading to high performance overhead.

3.3.3 Collage-based GCs

In collage-based GCs, actors record local snapshots at arbitrary times and it is left up to the
garbage collector to determine which local snapshots are consistent with one another. The ad-
vantage of this approach is that it allows implementors to use heuristics to decide when (and
how frequently) an actor should take a snapshot. Collage-based GCs typically do not assume
that every actor has recorded a snapshot, so these approaches are naturally fault-tolerant.

Puaut’s GC [14] can be seen as a collage-based GC in which nodes record local snapshots,
rather than actors. However, it is not necessarily true that these node snapshots will ever form a
consistent collage.

The first truly collage-based actor GC,MAC, was introduced byClebsch andDrossopoulou [10].
In MAC, actors take snapshots when their mailbox is empty and send those snapshots to a cen-
tralized cyclic garbage collector. The garbage collector uses a simple request-reply protocol to
identify sets of snapshots that are both consistent quiescent. This protocol appears to be a version
of the Alagar-Venkatesan global snapshot protocol [48], generalized from a fixed set of processes
to a dynamic set of actors. The main limitation of the Clebsch-Drossopoulou GC is its reliance
on causal delivery between actors. Causal delivery in a distributed system imposes additional
costs: the well-known strategy of using vector clocks requires𝑂 (𝑛) additional memory for each
message, where 𝑛 is the number of actors [49]. A more recent proposal, in which nodes must
be arranged in a tree topology, does not impose this overhead but still prevents point-to-point
communication between nodes [50]. Also, the centralized cycle detector is both a bottleneck and
a single point of failure.

The actor GCs presented in Parts I and II build on MAC in two ways. Part I removes the causal
message delivery and centralization requirements of MAC by adding data to each actor’s local
state and by using a novel form of reference listing. Part II takes a different approach, removing

15

CHAPTER 3. Related Work

the need for reference listing and making the garbage collector fault-recovering.

16

Part I

Coordination-Free Actor GC

17

Part I presents PRL: an actor GC based on Proactive Reference Listing. The primary advantage
of PRL is that it is decentralized and naturally fault-tolerant: local garbage can be collected in a
subsystem without communicating with the rest of the system. Systems can also cooperate to
detect distributed garbage by exchanging minimal amounts of information. Garbage collection
can be performed concurrently with the application, requires no locks or memory barriers, and
imposes no message ordering constraints.

PRL works as follows. Actors implement the PRL communication protocol (Chapter 4) which
maintains information about references and message counts in each actor’s state. When an actor
no longer needs a reference, it sends a message to the target actor to release the reference; this
allows actors to detect when they become acyclic garbage. To detect cyclic quiescent garbage,
each actor periodically sends a snapshot of its garbage collection information to a garbage collec-
tor actor. A garbage collector combines these snapshots into a collage and periodically searches
the collage for actors that appear quiescent (Chapter 5). Once a garbage collector suspects that an
actor is quiescent, it asks the actor to terminate. We prove that non-quiescent actors will never
be garbage collected (Corollary 5.1) and, if every quiescent actor eventually sends a snapshot to
the garbage collector, then all quiescent actors will eventually be collected (Theorem 5.3). We
also show how a team of garbage collectors can detect cooperatively detect distributed garbage
with little communication (Section 5.3).

Since PRL is defined in terms of the actor model, it is oblivious to details of a particular imple-
mentation (such as how sequential computations are represented or where actors are located).
Our technique is therefore applicable to different actor frameworks; in particular, it may be im-
plemented as a library. Moreover, it can also be applied to open systems, allowing an actor system
using PRL to interoperate with a manually-collected actor system.

18

4

Proactive Reference Listing

This chapter presents the PRL communication protocol. We begin by motivating what kind
of information a garbage collector would need to detect quiescent actors. Next we present the
communication protocol more formally, using a two-level semantic model [51]. In this model, a
system-level transition system interprets the operations performed by a user-facing application-

level transition system. The application level defines the abstract operational semantics of the
actor system from the user’s perspective, including location transparency and fairness assump-
tions. Since PRL preserves this semantics, we leave out the application-level system; for a for-
malization, see [25]. The system-level transition system defines each actor’s system-level state
and what additional actions should be performed when the application level tried to do an op-
eration, such as sending a message or spawning an actor. In the case of PRL, these operations
sometimes cause additional system-level messages to be sent or for metadata to be added to an
application-level message.

4.1 Overview

Ordinary actor systems allow an actor 𝑎 to send a message to actor 𝑏 if 𝑎 has 𝑏’s address. In
PRL, actors must use reference objects (abbreviated refobs) instead; refobs combine a plain actor
address (the address of the target) with additional metadata, such as the address of the refob’s
designated owner. A refob can only be used by its owner: in order for 𝑎 to give 𝑏 a reference to 𝑐 ,
it explicitly creates a new refob owned by 𝑏. Once a refob is no longer needed, it is deactivated by
its owner and removed from the owner’s local state. These operations could be done manually
at the application level or handled automatically in the runtime via a suitable API.

The PRL communication protocol enriches each actor’s state with a list of refobs that it cur-
rently owns and associated message counts representing the number of messages sent using each
refob. Each actor also maintains a subset of the refobs of which it is the target, together with asso-
ciated message receive counts. Lastly, actors perform a form of “contact tracing” by maintaining

19

CHAPTER 4. Proactive Reference Listing

a subset of the refobs that they have created for other actors; we provide details about the book-
keeping later in this section.

The additional information above allows us to detect quiescence by inspecting actor snapshots.
If a collage is consistent (in the sense of [21]) then we can use the “contact tracing” information
to determine whether the set is closed under the potential inverse acquaintance relation (see
Section 4.5). Then, given a consistent and closed collage, we can use the message counts to
determine whether an actor is blocked. We can therefore find all the quiescent actors within a
consistent collage.

In fact, PRL satisfies a stronger property: any collage that “appears quiescent” in the sense
above is guaranteed to be consistent. Hence, given an arbitrary closed collage, it is possible to
determine which of the corresponding actors have quiescent. This allows a great deal of freedom
in how snapshots are collected. For instance, each actor could set its own recurring timeout for
when to take the next snapshot. The duration of this timeout could be changed based on runtime
information, such as how long the actor has been alive; this would amount to a generational

approach to actor garbage collection [52].

4.1.1 Reference Objects

A refob is a triple (𝑥, 𝑎, 𝑏), where 𝑎 is the owner actor’s address, 𝑏 is the target actor’s address,
and 𝑥 is a globally unique token. An actor can cheaply generate such a token by combining its
address with a local sequence number, since actor systems already guarantee that each address
is unique. We will stylize a triple (𝑥, 𝑎, 𝑏) as 𝑥 : 𝑎 ⊸ 𝑏. We will also sometimes refer to such a
refob as simply 𝑥 , since tokens act as unique identifiers.

When an actor 𝑎 spawns an actor 𝑏 (Figure 4.1 (1, 2)) the PRL protocol creates a new refob
𝑥 : 𝑎 ⊸ 𝑏 that is stored in both 𝑎 and𝑏’s system-level state, and a refob𝑤 : 𝑏 ⊸ 𝑏 in𝑏’s state. The
refob 𝑥 allows 𝑎 to send application-level messages to 𝑏. These messages are denoted app(𝑥, 𝑅),
where 𝑅 is the set of refobs contained in the message that 𝑎 has created for 𝑏. The refob 𝑦

corresponds to the self variable present in some actor languages.
If 𝑎 has active refobs 𝑥 : 𝑎 ⊸ 𝑏 and 𝑦 : 𝑎 ⊸ 𝑐 , then it can create a new refob 𝑧 : 𝑏 ⊸ 𝑐 by

generating a token 𝑧. In addition to being sent to 𝑏, this refob must also temporarily be stored
in 𝑎’s system-level state and marked as “created using 𝑦” (Figure 4.1 (3)). Once 𝑏 receives 𝑧, it
must add the refob to its system-level state and mark it as “active” (Figure 4.1 (4)). Note that 𝑏
can have multiple distinct refobs that reference the same actor in its state; this can be the result
of, for example, several actors concurrently sending refobs to 𝑏. Transition rules for spawning
actors and sending messages are given in Section 4.2.2.

Actor 𝑎 may remove 𝑧 from its state once it has sent a (system-level) info message informing

20

CHAPTER 4. Proactive Reference Listing

𝑐 𝑎𝑦

𝑐 𝑎 𝑏𝑥𝑦

𝑐 𝑎 𝑏𝑥𝑦

CreatedUsing(𝑦, 𝑧)

app(𝑥, {𝑧})

𝑐 𝑎 𝑏𝑥𝑦

Active(𝑧)

info(𝑦, 𝑧)

𝑐 𝑎 𝑏𝑥𝑦

Created(𝑧)
release(𝑧)

𝑐 𝑎 𝑏𝑥𝑦

Created(𝑧)
Released(𝑧)

𝑎 𝑥 𝑚

(2)

(4)

(6)

(1)

(3)

(5)

𝑧

𝑎

Busy Actor Reference MessageIdle Actor

Figure 4.1: An example showing how refobs are created and destroyed. Below each actor we list
all the “facts” related to 𝑧 that are stored in its local state. Although not pictured in the figure, 𝑎
also obtains facts Active(𝑥) and Active(𝑦) after spawning actors𝑏 and 𝑐 , respectively. Likewise,
actors 𝑏, 𝑐 obtain facts Created(𝑥), Created(𝑦), respectively, upon being spawned.

21

CHAPTER 4. Proactive Reference Listing

release(𝑧)

app(𝑥 ′
, {𝑧 ′})

app(𝑧 ′)

𝑎

𝑏

𝑐

𝑡1

app(𝑧) 𝑡2 𝑡3𝑡0

info(𝑧,𝑦)

ap
p
(𝑥
, {
𝑦
})

app(𝑥 ′)

∅

∅ Sent(𝑧, 2)

Recv(𝑧, 2) ∅

∅

Recv(𝑧′, 2)

Sent(𝑧′, 2)Sent(𝑧, 1)

Recv(𝑧, 1)

app(𝑧 ′)

Figure 4.2: An event diagram for actors 𝑎, 𝑏, 𝑐 , illustrating message counts and consistent snap-
shots. Dashed arrows represent messages and dotted lines represent mutually quiescent cuts.
For a cut to be mutually quiescent, it is necessary (but not sufficient) that the message send and
receive counts agree for all participants.

𝑐 about 𝑧 (Figure 4.1 (4)). Similarly, when 𝑏 no longer needs its refob for 𝑐 , it can “deactivate” 𝑧
by removing it from local state and sending 𝑐 a (system-level) release message (Figure 4.1 (5)).
Note that if 𝑏 already has a refob 𝑧 : 𝑏 ⊸ 𝑐 and then receives another 𝑧′ : 𝑏 ⊸ 𝑐 , then it can be
more efficient to defer deactivating the extraneous 𝑧′ until 𝑧 is also no longer needed; this way,
the release messages can be batched together.
When 𝑐 receives an info message, it records that the refob has been created, and when 𝑐

receives a releasemessage, it records that the refob has been released (Figure 4.1 (6)). Note that
these messages may arrive in any order. Once 𝑐 has received both, it is permitted to remove all
facts about the refob from its local state. Transition rules for these reference listing actions are
given in Section 4.2.3.

Once a refob has been created, it cycles through four states: pending, active, inactive, or re-
leased. A refob 𝑧 : 𝑏 ⊸ 𝑐 is said to be pending until it is received by its owner 𝑏. Once received,
the refob is active until it is deactivated by its owner, at which point it becomes inactive. Finally,
once 𝑐 learns that 𝑧 has been deactivated, the refob is said to be released. A refob that has not yet
been released is unreleased.

Slightly amending the definition we gave in Chapter 2, we say that 𝑏 is a potential acquaintance
of𝑎 (and𝑎 is a potential inverse acquaintance of𝑏) when there exists an unreleased refob𝑥 : 𝑎 ⊸ 𝑏.
Thus, 𝑏 becomes a potential acquaintance of 𝑎 as soon as 𝑥 is created, and only ceases to be an
acquaintance once it has received a release message for every refob 𝑦 : 𝑎 ⊸ 𝑏 that has been
created so far.

22

CHAPTER 4. Proactive Reference Listing

4.1.2 Message Counts and Snapshots

For each refob 𝑥 : 𝑎 ⊸ 𝑏, the owner 𝑎 maintains a count of how many app and infomessages
have been sent along 𝑥 ; this count can be deleted when 𝑎 deactivates 𝑥 . Each message is an-
notated with the refob used to send it. Whenever 𝑏 receives an app or info message along 𝑥 ,
it correspondingly increments a receive count for 𝑥 ; this count can be deleted once 𝑥 has been
released. Thus the memory overhead of message counts is linear in the number of unreleased
refobs. Figure 4.2 gives an example.

A snapshot is a copy of all the facts in an actor’s system-level state at some point in time. We
will assume throughout the paper that in every collage𝑄 , each snapshot was taken by a different
actor; such a set is also said to form a cut. Recall that a collage𝑄 is consistent if no snapshot in𝑄
causally precedes any other [21]; it is as if all the actors in𝑄 took their snapshots simultaneously.
Let us also say that𝑄 ismutually quiescent if for all actors 𝑎, 𝑏 in𝑄 , all messages sent from 𝑎 to 𝑏
before 𝑎’s snapshot were also received before 𝑏’s snapshot. Notice that mutual quiescence is just
a special case of consistency, in which all messages sent by actors in the cut to actors in the cut
have been delivered. Moreover, if each actor in 𝑄 is idle and 𝑄 contains each actor’s potential
inverse acquaintances, then𝑄 corresponds to a quiescent set of actors: every actor in𝑄 is blocked
and only potentially reachable by other blocked actors in 𝑄 .
One might therefore hope to check whether𝑄 is mutually quiescent by simply comparing the

message send and receive counts of all snapshots in 𝑄 . Clearly, if 𝑄 is mutually quiescent, then
the participants’ send and receive counts will agree for each 𝑥 : 𝑎 ⊸ 𝑏 where 𝑎, 𝑏 ∈ 𝑄 . However,
the converse may be false for two reasons: out of order delivery of messages, and temporarily
null message counts.

1. Out of order delivery: In Figure 4.2, a snapshot from 𝑏 when Sent(𝑧, 1) is in its knowledge
set would not be consistent with a snapshot from 𝑐 when Received(𝑧, 1) is in its knowledge
set. This is because the message info(𝑧,𝑦) is sent after 𝑏’s snapshot and received before
𝑐’s snapshot. To guarantee this situation does not occur, we must be able to prove that 𝑏
does not send any messages along 𝑧 in the interval between 𝑏’s snapshot and 𝑐’s snapshot.
In particular, this holds when 𝑐’s snapshot happens before 𝑏’s snapshot.

2. Null message count: Based on the available information, 𝑐’s snapshot at 𝑡0 in Figure 4.2 ap-
pears mutually quiescent with 𝑏’s snapshot at 𝑡2 and 𝑐’s snapshot at 𝑡2 appears mutually
quiescent with 𝑏’s snapshot at 𝑡0—despite neither of these pairs being truly mutually qui-
escent. The problem is that when 𝑏’s send count for 𝑧 : 𝑏 ⊸ 𝑐 is null, it could be because
𝑏 has not yet received 𝑧 or because 𝑏 has already deactivated 𝑧. Likewise, 𝑐’s receive count
could be null because it has not yet received any messages along 𝑧 or because 𝑧 has already
been released.

23

CHAPTER 4. Proactive Reference Listing

To distinguish these scenarios, we incorporate the snapshots of 𝑐’s other potential inverse
acquaintances—such as 𝑎—into the snapshot set 𝑄 . In Section 4.5 we identify a distributed prop-
erty called the Chain Lemma that must hold in any consistent collage closed under the potential
inverse acquaintance relation. We show, in Chapter 5, that combining the Chain Lemma with
message counts is sufficient to determine whether a collage is mutually quiescent.

4.2 Model

We use the letters 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 to denote actor addresses. Tokens are denoted 𝑥,𝑦, 𝑧, with a special
reserved token null for messages from external actors.

A fact is a value that takes one of the following forms: Created(𝑥), Released(𝑥), Active(𝑥),
Unreleased(𝑥), CreatedUsing(𝑥,𝑦), Sent(𝑥, 𝑛), or Received(𝑥, 𝑛) for some refobs 𝑥,𝑦 and nat-
ural number 𝑛. Each actor’s state holds a set of facts about refobs and message counts called its
knowledge set. We use 𝜙,𝜓 to denote facts and Φ,Ψ to denote finite sets of facts. Each fact may
be interpreted as a predicate that indicates the occurrence of some past event. Interpreting a set
of facts Φ as a set of axioms, we write Φ ⊢ 𝜙 when 𝜙 is derivable by first-order logic from Φ with
the following additional rules:

• If (�𝑛 ∈ N, Sent(𝑥, 𝑛) ∈ Φ) then Φ ⊢ Sent(𝑥, 0)
• If (�𝑛 ∈ N, Received(𝑥, 𝑛) ∈ Φ) then Φ ⊢ Received(𝑥, 0)
• If Φ ⊢ Created(𝑥) ∧ ¬Released(𝑥) then Φ ⊢ Unreleased(𝑥)
• If Φ ⊢ CreatedUsing(𝑥,𝑦) then Φ ⊢ Created(𝑦)

For convenience, we define a pair of functions incSent(𝑥,Φ), incRecv(𝑥,Φ) for incrementing
message send/receive counts, as follows: If Sent(𝑥, 𝑛) ∈ Φ for some 𝑛, then incSent(𝑥,Φ) =

(Φ \ {Sent(𝑥, 𝑛)}) ∪ {Sent(𝑥, 𝑛 + 1)}; otherwise, incSent(𝑥,Φ) = Φ ∪ {Sent(𝑥, 1)}. Likewise for
incRecv and Received.

Recall that an actor is either busy (processing a message) or idle (waiting for a message). An
actor with knowledge set Φ is denoted [Φ] if it is busy and (Φ) if it is idle.

Our specification includes both system messages (also called control messages) and applica-

tion messages. The former are automatically generated by the PRL protocol and handled at the
system level, whereas the latter are explicitly created and consumed by user-defined behaviors.
Application-level messages are denoted app(𝑥, 𝑅). The argument 𝑥 is the refob used to send the
message. The second argument 𝑅 is a set of refobs created by the sender to be used by the desti-
nation actor. Any remaining application-specific data in the message is omitted in our notation.

The PRL communication protocol uses two kinds of systemmessages. info(𝑦, 𝑧, 𝑏) is amessage
sent from an actor 𝑎 to an actor 𝑐 , informing it that a new refob 𝑧 : 𝑏 ⊸ 𝑐 was created using
𝑦 : 𝑎 ⊸ 𝑐 . release(𝑥, 𝑛) is a message sent from an actor 𝑎 to an actor 𝑏, informing it that the

24

CHAPTER 4. Proactive Reference Listing

refob 𝑥 : 𝑎 ⊸ 𝑏 has been deactivated and that a total of 𝑛 messages have been sent along 𝑥 .
A configuration ⟨⟨ 𝛼 | 𝜇 ⟩⟩𝜌𝜒 is a quadruple (𝛼, 𝜇, 𝜌, 𝜒) where: 𝛼 is a mapping from actor addresses

to knowledge sets; 𝜇 is a mapping from actor addresses to multisets of messages; and 𝜌, 𝜒 are sets
of actor addresses. Actors in dom(𝛼) are internal actors and actors in 𝜒 are external actors; the
two sets may not intersect. The mapping 𝜇 associates each actor with undelivered messages to
that actor. Actors in 𝜌 are receptionists [25]: an internal actor 𝑎 becomes a receptionist when its
address is exposed to an external actor. Subsequently, any external actor can obtain 𝑎’s address
and send it a message. We will ensure 𝜌 ⊆ dom(𝛼) remains valid in any configuration that is
derived from a configuration where the property holds (referred to as the locality laws in [53]).

Configurations are denoted by 𝜅, 𝜅′, 𝜅0, etc. If an actor address 𝑎 (resp. a token 𝑥), does not
occur in𝜅, then the address (resp. the token) is said to be fresh. We assume a facility for generating
fresh addresses and tokens.

In order to express our transition rules in a pattern-matching style, we will employ the follow-
ing shorthand. Let 𝛼, [Φ]𝑎 refer to a mapping 𝛼′ where 𝛼′(𝑎) = [Φ] and 𝛼 = 𝛼′|dom(𝛼 ′)\{𝑎}. Simi-
larly, let 𝜇, [𝑎⊳𝑚] refer to amapping 𝜇′where𝑚 ∈ 𝜇′(𝑎) and 𝜇 = 𝜇′|dom(𝜇′)\{𝑎}∪{𝑎 ↦→ 𝜇′(𝑎)\{𝑚}}.
Informally, the expression 𝛼, [Φ]𝑎 refers to a set of actors containing both 𝛼 and the busy actor 𝑎
(with knowledge set Φ); the expression 𝜇, [𝑎 ⊳𝑚] refers to the set of messages containing both 𝜇

and the message𝑚 (sent to actor 𝑎).
The rules of our transition system define atomic transitions from one configuration to another.

Each transition rule has a label 𝑙 , parameterized by some variables ®𝑥 that occur in the left- and
right-hand configurations. Given a configuration 𝜅, these parameters functionally determine the

next configuration 𝜅′. Given arguments ®𝑣 , we write 𝜅
𝑙 (®𝑣)
−−−→ 𝜅′ to denote a semantic step from 𝜅 to

𝜅′ using rule 𝑙 (®𝑣).
We refer to a label with arguments 𝑙 (®𝑣) as an event, denoted 𝑒 . a sequence of events is denoted

𝜋 . If 𝜋 = 𝑒1, . . . , 𝑒𝑛 then we write 𝜅
𝜋−→ 𝜅′ when 𝜅

𝑒1−→ 𝜅1
𝑒2−→ . . .

𝑒𝑛−→ 𝜅′. If there exists 𝜋 such that
𝜅

𝜋−→ 𝜅′, then 𝜅′ is derivable from 𝜅. An execution path (also called a computation path [25]) is a
sequence of events 𝑒1, . . . , 𝑒𝑛 such that𝜅0

𝑒1−→ 𝜅1
𝑒2−→ . . .

𝑒𝑛−→ 𝜅𝑛 , where𝜅0 is the initial configuration
(Section 4.2.1). We say that a property holds at time 𝑡 if it holds in 𝜅𝑡 . We will also employ the
shorthand that 𝛼𝑡 is the actor configuration at time 𝑡 , i.e. 𝜅𝑡 = ⟨⟨ 𝛼𝑡 | 𝜇 ⟩⟩𝜌𝜒 .
Note that the PRL communication protocol does not require a notion of a unique global time.

We could have given a more general specification using concurrent rewriting [54], in which po-
tential execution paths are partial orders of events. A given execution path in such a specification
can be mapped to an execution path in our system by mapping its partial order to a total order
which respects the ordering specified in the partial order. We refer to “time” as an ordinal corre-
sponding to an arbitrary total order that is consistent with a partial order in a system’s execution

25

CHAPTER 4. Proactive Reference Listing

Spawn(𝑥, 𝑎, 𝑏)

⟨⟨ 𝛼, [Φ]𝑎 | 𝜇 ⟩⟩𝜌𝜒 → ⟨⟨ 𝛼, [Φ ∪ {Active(𝑥 : 𝑎 ⊸ 𝑏)}]𝑎, [Ψ]𝑏 | 𝜇 ⟩⟩𝜌𝜒

where 𝑥,𝑦, 𝑏 fresh
and Ψ = {Created(𝑥 : 𝑎 ⊸ 𝑏), Created(𝑦 : 𝑏 ⊸ 𝑏), Active(𝑦 : 𝑏 ⊸ 𝑏)}

Send(𝑥, ®𝑦, ®𝑧, 𝑎, 𝑏, ®𝑐)

⟨⟨ 𝛼, [Φ]𝑎 | 𝜇 ⟩⟩𝜌𝜒 → ⟨⟨ 𝛼, [incSent(𝑥,Φ) ∪ Ψ]𝑎 | 𝜇, [𝑏 ⊳ app(𝑥, 𝑅)] ⟩⟩𝜌𝜒

where ®𝑧 fresh and 𝑛 = | ®𝑦 | = |®𝑧 | = |®𝑐 |
and Φ ⊢ Active(𝑥 : 𝑎 ⊸ 𝑏) and ∀𝑖 ≤ 𝑛, Φ ⊢ Active(𝑦𝑖 : 𝑎 ⊸ 𝑐𝑖)
and 𝑅 = {𝑧𝑖 : 𝑏 ⊸ 𝑐𝑖 | 𝑖 ≤ 𝑛} and Ψ = {CreatedUsing(𝑦𝑖, 𝑧𝑖) | 𝑖 ≤ 𝑛}

Receive(𝑥, 𝑏, 𝑅)

⟨⟨ 𝛼, (Φ)𝑏 | 𝜇, [𝑏 ⊳ app(𝑥, 𝑅)] ⟩⟩𝜌𝜒 → ⟨⟨ 𝛼, [incRecv(𝑥,Φ) ∪ Ψ]𝑏 | 𝜇 ⟩⟩𝜌𝜒

where Ψ = {Active(𝑧) | 𝑧 ∈ 𝑅}

Idle(𝑎)
⟨⟨ 𝛼, [Φ]𝑎 | 𝜇 ⟩⟩𝜌𝜒 → ⟨⟨ 𝛼, (Φ)𝑎 | 𝜇 ⟩⟩

𝜌
𝜒

Figure 4.3: Rules for standard actor interactions.

path (see [22, 55]). This allows us to prove various properties by induction on time 𝑡 instead of
by more complicated means.

4.2.1 Initial Configuration

The initial configuration 𝜅0 consists of a single actor in a busy state: ⟨⟨ [Φ]𝑎 | ∅ ⟩⟩∅{𝑒}, where
Φ = {Active(𝑥 : 𝑎 ⊸ 𝑒), Created(𝑦 : 𝑎 ⊸ 𝑎), Active(𝑦 : 𝑎 ⊸ 𝑎)}. The actor’s knowledge set
includes a refob to itself and a refob to an external actor 𝑒 . 𝑎 can become a receptionist by sending
𝑒 a refob to itself. Henceforth, we will only consider configurations that are derivable from an
initial configuration.

4.2.2 Standard Actor Operations

Figure 4.3 gives transition rules for standard actor operations, such as spawning actors and
sending messages. Each of these rules corresponds a rule in the standard operational semantics

26

CHAPTER 4. Proactive Reference Listing

of actors [25]. Note that each rule is atomic, but can just as well be implemented as a sequence
of several smaller steps without loss of generality because actors do not share state—see [25] for
a formal proof.

The Spawn event allows a busy actor𝑎 to spawn a new actor𝑏 and creates two refobs, 𝑥 : 𝑎 ⊸ 𝑏

and 𝑦 : 𝑏 ⊸ 𝑏. Actor 𝑏 is initialized with knowledge about 𝑥 and 𝑦 via the facts Created(𝑥) and
Created(𝑦). The facts Active(𝑥) and Active(𝑦) allow 𝑎 and 𝑏 to immediately begin sending
messages to 𝑏. Note that implementing Spawn does not require a synchronization protocol be-
tween 𝑎 and 𝑏 to construct 𝑥 : 𝑎 ⊸ 𝑏. The parent 𝑎 can pass both its address and the freshly
generated token 𝑥 to the constructor for 𝑏. Since actors typically know their own addresses, this
allows 𝑏 to construct the triple (𝑥, 𝑎, 𝑏). Since the spawn call typically returns the address of the
spawned actor, 𝑎 can also create the same triple.

The Send event allows a busy actor 𝑎 to send an application-level message to 𝑏 containing a
set of refobs 𝑧1, . . . , 𝑧𝑛 to actors ®𝑐 = 𝑐1, . . . , 𝑐𝑛 . Note that it is possible that 𝑏 = 𝑎 or 𝑐𝑖 = 𝑎 for some
𝑖 in this sequence—i.e., an actor may send itself a message, or it may send 𝑏 its a refob containing
its own address. For each new refob 𝑧𝑖 , we say that the message contains 𝑧𝑖 . Any other data in
the message besides these refobs is irrelevant to quiescence detection and therefore omitted. To
send the message, 𝑎 must have active refobs to both the target actor 𝑏 and to every actor 𝑐1, . . . , 𝑐𝑛
referenced in the message. For each target 𝑐𝑖 , 𝑎 adds a fact CreatedUsing(𝑦𝑖, 𝑧𝑖) to its knowledge
set; we say that 𝑎 created 𝑧𝑖 using 𝑦𝑖 . Finally, 𝑎 must increment its Sent count for the refob 𝑥 used
to send the message; we say that the message is sent along 𝑥 .
The Receive event allows an idle actor𝑏 to become busy by consuming an application message

sent to 𝑏. Before performing subsequent actions, 𝑏 increments the receive count for 𝑥 and adds
all refobs in the message to its knowledge set.

Finally, the Idle event puts a busy actor into the idle state, enabling it to consume another
message.

4.2.3 Release Protocol

Whenever an actor creates or receives a refob, it adds facts to its knowledge set. To remove
these facts when they are no longer needed, actors can perform the release protocol defined in
Figure 4.4. All of these rules are not present in the standard operational semantics of actors.

The SendInfo event allows a busy actor 𝑎 to inform 𝑐 about a refob 𝑧 : 𝑏 ⊸ 𝑐 that it created
using𝑦; we say that the infomessage is sent along𝑦 and contains 𝑧. This event allows 𝑎 to remove
the fact CreatedUsing(𝑦, 𝑧) from its knowledge set. It is crucial that 𝑎 also increments its Sent
count for 𝑦 to indicate an undelivered info message sent to 𝑐: it allows the garbage collector
to detect when there are undelivered info messages, which contain refobs. This message is

27

CHAPTER 4. Proactive Reference Listing

SendInfo(𝑦, 𝑧, 𝑎, 𝑏, 𝑐)

⟨⟨ 𝛼, [Φ ∪ Ψ]𝑎 | 𝜇 ⟩⟩𝜌𝜒 → ⟨⟨ 𝛼, [incSent(𝑦,Φ)]𝑎 | 𝜇, [𝑐 ⊳ info(𝑦, 𝑧, 𝑏)] ⟩⟩
𝜌
𝜒

where Ψ = {CreatedUsing(𝑦 : 𝑎 ⊸ 𝑐, 𝑧 : 𝑏 ⊸ 𝑐)}

Info(𝑦, 𝑧, 𝑏, 𝑐)

⟨⟨ 𝛼, (Φ)𝑐 | 𝜇, [𝑐 ⊳ info(𝑦, 𝑧, 𝑏)] ⟩⟩𝜌𝜒 → ⟨⟨ 𝛼, (incRecv(𝑦,Φ) ∪ Ψ)𝑐 | 𝜇 ⟩⟩𝜌𝜒

where Ψ = {Created(𝑧 : 𝑏 ⊸ 𝑐)}

SendRelease(𝑥, 𝑎, 𝑏)

⟨⟨ 𝛼, [Φ ∪ Ψ]𝑎 | 𝜇 ⟩⟩𝜌𝜒 → ⟨⟨ 𝛼, [Φ]𝑎 | 𝜇, [𝑏 ⊳ release(𝑥, 𝑛)] ⟩⟩𝜌𝜒

where Ψ = {Active(𝑥 : 𝑎 ⊸ 𝑏), Sent(𝑥, 𝑛)}
and �𝑦, CreatedUsing(𝑥,𝑦) ∈ Φ

Release(𝑥, 𝑎, 𝑏)

⟨⟨ 𝛼, (Φ)𝑏 | 𝜇, [𝑏 ⊳ release(𝑥, 𝑛)] ⟩⟩𝜌𝜒 → ⟨⟨ 𝛼, (Φ ∪ {Released(𝑥)})𝑏 | 𝜇 ⟩⟩
𝜌
𝜒

only if Φ ⊢ Received(𝑥, 𝑛)

Compaction(𝑥, 𝑏, 𝑐)

⟨⟨ 𝛼, (Φ ∪ Ψ)𝑐 | 𝜇 ⟩⟩𝜌𝜒 → ⟨⟨ 𝛼, (Φ)𝑐 | 𝜇 ⟩⟩
𝜌
𝜒

where Ψ = {Created(𝑥 : 𝑏 ⊸ 𝑐), Released(𝑥 : 𝑏 ⊸ 𝑐), Received(𝑥, 𝑛)}
for some 𝑛 ∈ N

or Ψ = {Created(𝑥 : 𝑏 ⊸ 𝑐), Released(𝑥 : 𝑏 ⊸ 𝑐)} and
∀𝑛 ∈ N, Received(𝑥, 𝑛) ∉ Φ

Snapshot(𝑎,Φ)
⟨⟨ 𝛼, (Φ)𝑎 | 𝜇 ⟩⟩𝜌𝜒 → ⟨⟨ 𝛼, (Φ)𝑎 | 𝜇 ⟩⟩

𝜌
𝜒

Figure 4.4: Rules for performing the release protocol.

delivered with the Info event, which adds the fact Created(𝑧 : 𝑏 ⊸ 𝑐) to 𝑐’s knowledge set and
correspondingly increments 𝑐’s Received count for 𝑦.

When an actor 𝑎 no longer needs 𝑥 : 𝑎 ⊸ 𝑏 for sending messages, 𝑎 can deactivate 𝑥 with the
SendRelease event; we say that the release is sent along 𝑥 . A precondition of this event is that

28

CHAPTER 4. Proactive Reference Listing

In(𝑥, 𝑎, 𝑅)
⟨⟨ 𝛼 | 𝜇 ⟩⟩𝜌𝜒 → ⟨⟨ 𝛼 | 𝜇, [𝑎 ⊳ app(𝑥, 𝑅)] ⟩⟩

𝜌

𝜒∪𝜒 ′

where 𝑎 ∈ 𝜌 and 𝑅 = {𝑥1 : 𝑎 ⊸ 𝑏1, . . . , 𝑥𝑛 : 𝑎 ⊸ 𝑏𝑛} and 𝑥1, . . . , 𝑥𝑛 fresh
and {𝑏1, . . . , 𝑏𝑛} ∩ dom(𝛼) ⊆ 𝜌 and 𝜒′ = {𝑏1, . . . , 𝑏𝑛} \ dom(𝛼)

Out(𝑥, 𝑏, 𝑅)
⟨⟨ 𝛼 | 𝜇, [𝑏 ⊳ app(𝑥, 𝑅)] ⟩⟩𝜌𝜒 → ⟨⟨ 𝛼 | 𝜇 ⟩⟩

𝜌∪𝜌 ′
𝜒

where 𝑏 ∈ 𝜒 and 𝑅 = {𝑥1 : 𝑏 ⊸ 𝑐1, . . . , 𝑥𝑛 : 𝑏 ⊸ 𝑐𝑛} and 𝜌′ = {𝑐1, . . . , 𝑐𝑛} ∩ dom(𝛼)

ReleaseOut(𝑥, 𝑏)

⟨⟨ 𝛼 | 𝜇, [𝑏 ⊳ release(𝑥, 𝑛)] ⟩⟩𝜌
𝜒∪{𝑏} → ⟨⟨ 𝛼 | 𝜇 ⟩⟩

𝜌

𝜒∪{𝑏}

InfoOut(𝑦, 𝑧, 𝑎, 𝑏, 𝑐)

⟨⟨ 𝛼 | 𝜇, [𝑐 ⊳ info(𝑦, 𝑧, 𝑎, 𝑏)] ⟩⟩𝜌
𝜒∪{𝑐} → ⟨⟨ 𝛼 | 𝜇 ⟩⟩

𝜌

𝜒∪{𝑐}

Figure 4.5: Rules for interacting with the outside world.

𝑎 has already sent messages to inform 𝑏 about all the refobs it has created using 𝑥 . In practice,
an implementation may defer sending any info or release messages to a target 𝑏 until all 𝑎’s
refobs to 𝑏 are deactivated. This introduces a trade-off between the number of control messages
and the rate of simple garbage detection (Section 4.5).

Each release message for a refob 𝑥 includes a count 𝑛 of the number of messages sent using
𝑥 . This ensures that release(𝑥, 𝑛) is only delivered after all the preceding messages sent along
𝑥 have been delivered. Once the Release event can be executed, it adds the fact that 𝑥 has been
released to 𝑏’s knowledge set. Once 𝑐 has received both an info and releasemessage for a refob
𝑥 , it may remove facts about 𝑥 from its knowledge set using the Compaction event.

Finally, the Snapshot event captures an idle actor’s knowledge set. For simplicity, we have
omitted the process of disseminating snapshots to a garbage collector. Although this event does
not change the configuration, it allows us to prove properties about snapshot events at different
points in time.

4.2.4 Composition and Effects

We give rules to dictate how internal actors interact with external actors in Figure 4.5. The In
and Out rules correspond to similar rules in the standard operational semantics of actors.

29

CHAPTER 4. Proactive Reference Listing

External actors may or may not participate in the PRL protocol themselves. It would be rou-
tine (but tedious) to define the composition of two PRL systems and to give additional rules for
exchanging info and release messages between them. For simplicity, we only define the bare
minimum interaction between a system and its environment; all release and infomessages sent
to external actors are simply dropped by the ReleaseOut and InfoOut events. For a complete
formalization of actor composition, see [25]. We do, however, explore how garbage collectors
from different actor systems can cooperate to detect cycles of quiescent actors across the two
systems (Section 5.3).

The In event allows an external actor to send an application-level message to a receptionist 𝑎
containing a set of refobs 𝑅, all owned by 𝑎. If the external actor participates in PRL, the message
is annotated as usual with the token 𝑥 used to send the message. Otherwise, a special null token
can be used instead. All targets in 𝑅 that are not internal actors are added to the set of external
actors.

The Out event delivers an application-level message to an external actor with a set of refobs
𝑅. All internal actors referenced in 𝑅 become receptionists because their addresses have been
exposed to the outside world.

4.3 Basic Properties

We now prove some basic properties of our model, both to help understand its semantics and
to assist with later proofs.

Lemma 4.1. If 𝑏 has undelivered messages along 𝑥 : 𝑎 ⊸ 𝑏, then 𝑥 is an unreleased refob.

Proof. There are three types of messages: app(𝑥,−), info(𝑥,−,−,−), and release(𝑥,−). All
three messages can only be sent when 𝑥 is active. Moreover, the Release rule ensures that they
must all be delivered before 𝑥 can be released. QED.

Lemma 4.2.

• Once CreatedUsing(𝑦 : 𝑎 ⊸ 𝑐, 𝑧 : 𝑏 ⊸ 𝑐) is added to 𝑎’s knowledge set, it will not be re-
moved until after 𝑎 has sent an info message containing 𝑧 to 𝑐 .

• Once Created(𝑧 : 𝑏 ⊸ 𝑐) is added to 𝑐’s knowledge set, it will not be removed until after
𝑐 has received the (unique) release message along 𝑧.

• Once Released(𝑧 : 𝑏 ⊸ 𝑐) is added to 𝑐’s knowledge set, it will not be removed until after
𝑐 has received the (unique) info message containing 𝑧.

Proof. Immediate from the transition rules. QED.

30

CHAPTER 4. Proactive Reference Listing

The following lemma formalizes the argument made in Section 4.1. In our model, it is possible
for the message counts of two actor snapshots to agree, and yet for there to be undelivered mes-
sages between the two actors. However, in the special case where no messages are sent during
the interval between the two snapshots, we can indeed trust the message counts to accurately
reflect the number of undelivered messages.

Lemma 4.3. Consider a refob 𝑥 : 𝑎 ⊸ 𝑏. Let 𝑡1, 𝑡2 be times such that 𝑥 has not yet been deacti-
vated at 𝑡1 and 𝑥 has not yet been released at 𝑡2. In particular, 𝑡1 and 𝑡2 may be before the creation
time of 𝑥 .

Suppose that 𝛼𝑡1 (𝑎) ⊢ Sent(𝑥, 𝑛) and 𝛼𝑡2 (𝑏) ⊢ Received(𝑥,𝑚) and, if 𝑡1 < 𝑡2, that 𝑎 does not
send any messages along 𝑥 during the interval [𝑡1, 𝑡2] . Then the difference max(𝑛 −𝑚, 0) is the
number of messages sent along 𝑥 before 𝑡1 that were not received before 𝑡2.

Proof. Since 𝑥 is not deactivated at time 𝑡1 and unreleased at time 𝑡2, the message counts were
never reset by the SendRelease or Compaction rules. Hence 𝑛 is the number of messages 𝑎
sent along 𝑥 before 𝑡1 and 𝑚 is the number of messages 𝑏 received along 𝑥 before 𝑡2. Hence
max(𝑛 −𝑚, 0) is the number of messages sent before 𝑡1 and not received before 𝑡2. QED.

4.4 Garbage

We can now operationally characterize actor garbage in our model. An actor 𝑎 can potentially

receive a message in 𝜅 if there is a sequence of events (possibly of length zero) leading from 𝜅 to
a configuration 𝜅′ in which 𝑎 has an undelivered message. We say that an actor is quiescent if it
is idle and cannot potentially receive a message.

An actor is blocked if it satisfies three conditions: (1) it is idle, (2) it is not a receptionist, and (3)
it has no undelivered messages; otherwise, it is unblocked. We define potential reachability as the
reflexive transitive closure of the potential acquaintance relation. That is, 𝑎1 can potentially reach
𝑎𝑛 if and only if there is a sequence of unreleased refobs (𝑥1 : 𝑎1 ⊸ 𝑎2), . . . , (𝑥𝑛 : 𝑎𝑛−1 ⊸ 𝑎𝑛);
recall that a refob 𝑥 : 𝑎 ⊸ 𝑏 is unreleased if its target 𝑏 has not yet received a release message
for 𝑥 .

Notice that an actor can potentially receive a message if and only if it is potentially reachable
from an unblocked actor. Hence an actor is quiescent if and only if it is only potentially reachable
by blocked actors. A special case of this is simple garbage, in which an actor is blocked and has
no potential inverse acquaintances besides itself.

We say that a set of actors 𝑆 is closed at time 𝑡 (with respect to the potential inverse acquain-
tance relation) if, whenever 𝑏 ∈ 𝑆 and there is an unreleased refob 𝑥 : 𝑎 ⊸ 𝑏 at time 𝑡 , then also

31

CHAPTER 4. Proactive Reference Listing

𝑎2

𝑎1

Created(𝑥1)

(2)(1) 𝑎3

app(𝑦, {𝑥3})

𝑏

CreatedUsing(𝑥1, 𝑥2)

info(𝑥2, 𝑥3)

𝑎2

𝑎1

Created(𝑥1)

𝑎3

app(𝑦, {𝑥3})

𝑏

CreatedUsing(𝑥1, 𝑥2)

CreatedUsing(𝑥2, 𝑥3)

𝑥1

𝑥2 𝑥2
𝑥1

Figure 4.6: An example of a chain from 𝑏 to 𝑥3.

𝑎 ∈ 𝑆 . The closure of a set of actors 𝑆′ is the smallest closed superset of 𝑆′. Notice that the closure
of a set of quiescent actors is also a set of quiescent actors.

4.5 Chain Lemma

To determine if an actor has quiescent, one must show that all of its potential inverse acquain-
tances have quiescent. This appears to pose a problem for quiescence detection, since actors
cannot have a complete listing of all their potential inverse acquaintances without some syn-
chronization: actors would need to consult their acquaintances before creating new references
to them. In this section, we show that the PRL protocol provides a weaker guarantee that will
nevertheless prove sufficient: knowledge about an actor’s refobs is distributed across the system
and there is always a “path” from the actor to any of its potential inverse acquaintances.

Let us construct a concrete example of such a path, depicted by Figure 4.6. Suppose that 𝑎1
spawns 𝑏, gaining a refob 𝑥1 : 𝑎1 ⊸ 𝑏. Then 𝑎1 may use 𝑥1 to create 𝑥2 : 𝑎2 ⊸ 𝑏, which 𝑎2 may
receive and then use 𝑥2 to create 𝑥3 : 𝑎3 ⊸ 𝑏.

At this point, there are unreleased refobs owned by 𝑎2 and 𝑎3 that are not included in𝑏’s knowl-
edge set. However, Figure 4.6 shows that the distributed knowledge of 𝑏, 𝑎1, 𝑎2 creates a “path”
to all of 𝑏’s potential inverse acquaintances. Since 𝑎1 spawned 𝑏, 𝑏 knows the fact Created(𝑥1).
Then when 𝑎1 created 𝑥2, it added the fact CreatedUsing(𝑥1, 𝑥2) to its knowledge set, and like-
wise 𝑎2 added the fact CreatedUsing(𝑥2, 𝑥3); each fact points to another actor that owns an
unreleased refob to 𝑏 (Figure 4.6 (1)).

Since actors can remove CreatedUsing facts by sending infomessages, we also consider (Fig-
ure 4.6 (2)) to be a “path” from 𝑏 to 𝑎3. But notice that, once 𝑏 receives the infomessage, the fact
Created(𝑥3) will be added to its knowledge set and so there will be a “direct path” from 𝑏 to 𝑎3.
We formalize this intuition with the notion of a chain in a given configuration ⟨⟨ 𝛼 | 𝜇 ⟩⟩𝜌𝜒 :

32

CHAPTER 4. Proactive Reference Listing

Definition 4.1. A chain to the refob 𝑥 : 𝑎 ⊸ 𝑏 is a sequence of unreleased refobs 𝑥1 : 𝑎1 ⊸ 𝑏,

. . . , 𝑥𝑛 : 𝑎𝑛 ⊸ 𝑏 such that:
• 𝛼 (𝑏) ⊢ Created(𝑥1 : 𝑎1 ⊸ 𝑏);
• For all 𝑖 < 𝑛, either 𝛼 (𝑎𝑖) ⊢ CreatedUsing(𝑥𝑖, 𝑥𝑖+1) or the message [𝑏 ⊳ info(𝑥𝑖, 𝑥𝑖+1)] is in
transit; and

• 𝑎𝑛 = 𝑎 and 𝑥𝑛 = 𝑥 .

We say that an actor 𝑏 is in the root set if it is a receptionist or if there is an application message
app(𝑥, 𝑅) in transit to an external actor with 𝑏 ∈ targets(𝑅).

Lemma 4.4 (Chain Lemma). Let 𝑏 be an internal actor in 𝜅. If 𝑏 is not in the root set, then there is
a chain to every unreleased refob 𝑥 : 𝑎 ⊸ 𝑏. Otherwise, there is a chain to some refob 𝑦 : 𝑐 ⊸ 𝑏

where 𝑐 is an external actor.

Remark: When 𝑏 is in the root set, not all of its unreleased refobs are guaranteed to have chains.
This is because an external actor may send 𝑏’s address to other receptionists without sending an
info message to 𝑏.

Proof. We prove that the invariant holds in the initial configuration and at all subsequent times
by induction on events 𝜅

𝑒−→ 𝜅′, omitting events that do not affect chains. Let 𝜅 = ⟨⟨ 𝛼 | 𝜇 ⟩⟩𝜌𝜒 and
𝜅′ = ⟨⟨ 𝛼′ | 𝜇′ ⟩⟩𝜌

′

𝜒 ′ .
In the initial configuration, the only refob to an internal actor is 𝑦 : 𝑎 ⊸ 𝑎. Since 𝑎 knows

Created(𝑦 : 𝑎 ⊸ 𝑎), the invariant is satisfied.
In the cases below, let 𝑥,𝑦, 𝑧, 𝑎, 𝑏, 𝑐 be free variables, not referencing the variables used in the

statement of the lemma.
• Spawn(𝑥, 𝑎, 𝑏) creates a new unreleased refob 𝑥 : 𝑎 ⊸ 𝑏, which satisfies the invariant be-
cause 𝛼′(𝑏) ⊢ Created(𝑥 : 𝑎 ⊸ 𝑏).

• Send(𝑥, ®𝑦, ®𝑧, 𝑎, 𝑏, ®𝑐) creates a set of refobs 𝑅. Let (𝑧 : 𝑏 ⊸ 𝑐) ∈ 𝑅, created using 𝑦 : 𝑎 ⊸ 𝑐 .
If 𝑐 is already in the root set, then the invariant is trivially preserved. Otherwise, there must
be a chain (𝑥1 : 𝑎1 ⊸ 𝑐), . . . , (𝑥𝑛 : 𝑎𝑛 ⊸ 𝑐) where 𝑥𝑛 = 𝑦 and 𝑎𝑛 = 𝑎. Then 𝑥1, . . . , 𝑥𝑛, 𝑧 is a
chain in 𝜅′, since 𝛼′(𝑎𝑛) ⊢ CreatedUsing(𝑥𝑛, 𝑧).
If 𝑏 is an internal actor, then this shows that every unreleased refob to 𝑐 has a chain in 𝜅′.
Otherwise, 𝑐 is in the root set in𝜅′. To see that the invariant still holds, notice that 𝑧 : 𝑏 ⊸ 𝑐

is a witness of the desired chain.
• SendInfo(𝑦, 𝑧, 𝑎, 𝑏, 𝑐) removes the CreatedUsing(𝑦, 𝑧) fact but also sends info(𝑦, 𝑧, 𝑏), so
chains are unaffected.

• Info(𝑦, 𝑧, 𝑏, 𝑐) delivers info(𝑦, 𝑧, 𝑏) to 𝑐 and adds Created(𝑧 : 𝑏 ⊸ 𝑐) to its knowledge set.

33

CHAPTER 4. Proactive Reference Listing

Suppose 𝑧 : 𝑏 ⊸ 𝑐 is part of a chain (𝑥1 : 𝑎1 ⊸ 𝑐), . . . , (𝑥𝑛 : 𝑎𝑛 ⊸ 𝑐), i.e. 𝑥𝑖 = 𝑦 and 𝑥𝑖+1 = 𝑧

and 𝑎𝑖+1 = 𝑏 for some 𝑖 < 𝑛. Since 𝛼′(𝑐) ⊢ Created(𝑥𝑖+1 : 𝑎𝑖+1 ⊸ 𝑐), we still have a chain
𝑥𝑖+1, . . . , 𝑥𝑛 in 𝜅′.

• Release(𝑥, 𝑎, 𝑏) releases the refob 𝑥 : 𝑎 ⊸ 𝑏. Since external actors never release their re-
fobs, both 𝑎 and 𝑏 must be internal actors.
Suppose the released refob was part of a chain (𝑥1 : 𝑎1 ⊸ 𝑏), . . . , (𝑥𝑛 : 𝑎𝑛 ⊸ 𝑏), i.e. 𝑥𝑖 = 𝑥

and 𝑎𝑖 = 𝑎 for some 𝑖 < 𝑛. We will show that 𝑥𝑖+1, . . . , 𝑥𝑛 is a chain in 𝜅′.
Before performing SendRelease(𝑥𝑖, 𝑎𝑖, 𝑏), 𝑎𝑖 must have performed the Info(𝑥𝑖, 𝑥𝑖+1, 𝑎𝑖+1, 𝑏)
event. Since the info message was sent along 𝑥𝑖 , Lemma 4.1 ensures that the message
must have been delivered before the present Release event. Furthermore, since 𝑥𝑖+1 is an
unreleased refob in 𝜅′, Lemma 4.2 ensures that 𝛼′(𝑏) ⊢ Created(𝑥𝑖+1 : 𝑎𝑖+1 ⊸ 𝑏).

• In(𝑎, 𝑅) adds a message from an external actor to the internal actor 𝑎. This event can only
create new refobs that point to receptionists, so it preserves the invariant.

• Out(𝑥, 𝑏, 𝑅) emits a message app(𝑥, 𝑅) to the external actor 𝑏. Since all targets in 𝑅 are
already in the root set, the invariant is preserved.

QED.

An immediate application of the Chain Lemma is to allow actors to detect when they are
simple garbage. If any actor besides 𝑏 owns an unreleased refob to 𝑏, then 𝑏 must have a fact
Created(𝑥 : 𝑎 ⊸ 𝑏) in its knowledge set where 𝑎 ≠ 𝑏. Hence, if 𝑏 has no such facts, then it
must have no nontrivial potential inverse acquaintances. Moreover, since actors can only have
undeliveredmessages along unreleased refobs,𝑏 also has no undeliveredmessages from any other
actor; it can only have undelivered messages that it sent to itself. This gives us the following
result:

Theorem 4.1. Suppose 𝑏 is idle with knowledge set Φ, such that:
• Φ does not contain any facts of the form Created(𝑥 : 𝑎 ⊸ 𝑏) where 𝑎 ≠ 𝑏; and
• for all facts Created(𝑥 : 𝑏 ⊸ 𝑏) ∈ Φ, also Φ ⊢ Sent(𝑥, 𝑛) ∧ Received(𝑥, 𝑛) for some 𝑛.

Then 𝑏 is simple garbage.

34

5

Quiescence Detection

In the following chapter, we present the scheme for detecting non-simple quiescent actors in
PRL. First, we define what it means for a collage to be finalized and prove that finalized sets cor-
respond to closed sets of quiescent actors. This reduces quiescence detection to simply collecting
snapshots at a garbage collector and periodically searching the collection for finalized subsets.
We prove that such an approach is safe and live (under reasonable fairness assumptions). Next,
in Section 5.2, we give an algorithm for finding the maximum finalized subset—the union of all
finalized subsets—in an arbitrary collage. This gives each garbage collector an efficient proce-
dure for detecting quiescent actors. Lastly, in Section 5.3, we show how a decentralized group of
garbage collectors can cooperate to detect distributed garbage while exchanging minimal infor-
mation. This makes PRL’s quiescence detection scalable, parallelizable, and capable of making
progress despite network partitions.

5.1 Consistent and Finalized Snapshots

Recall that when we speak of a collage 𝑄 , we assume each snapshot was taken by a different
actor. We will therefore represent 𝑄 as a mapping from actor names to snapshots, with 𝑄 (𝑎)
denoting 𝑎’s snapshot in 𝑄 .

As shown in Chapter 4, actor snapshots taken at different times can result in conflicting ac-
counts of the configuration. Hence, in general, an arbitrary collage𝑄 does not accurately describe
the current configuration. If a collage does accurately describe the configuration, we say that it
is consistent. Formally:

Definition 5.1. 𝑄 is consistent at time 𝑡 when∀𝜙,∀𝑎 ∈ dom(𝑄), 𝑄 (𝑎) ⊢ 𝜙 if and only if𝛼𝑡 (𝑎) ⊢ 𝜙 .

That is, the snapshot𝑄 (𝑎)may not have been taken at time 𝑡—yet the contents of𝑎’s knowledge
set at time 𝑡 are the same as𝑄 (𝑎). If𝑄 is consistent at time 𝑡 , then it is as if all the actors of dom(𝑄)
took their snapshots at time 𝑡 .

35

CHAPTER 5. Quiescence Detection

Another important notion is that of a quiescent actor’s final action. We define this as the last
non-snapshot event that an actor performs before becoming quiescent. Notice that an actor’s
final action can only be an Idle, Info, or Release event. This is because quiescent actors are
idle, and only these three events change an actor’s status from busy to idle. Note also that the
final action may come strictly before an actor becomes quiescent, since a blocked actor is only
considered to be quiescent once all of its potential inverse acquaintances are quiescent.

We can now give a simple proof of our earlier claim that snapshots from quiescent actors are
consistent. This property will allow us to treat finalized collages as if they were all taken at an
instant in global time.

Lemma 5.1. Let 𝑆 be a closed set of quiescent actors at time 𝑡 𝑓 . If every actor in 𝑆 took a snapshot
sometime after its final action, then the resulting set of snapshots 𝑄 is consistent at 𝑡 𝑓 .

Proof. a quiescent actor’s knowledge set never changes. Moreover, an actor’s knowledge set
cannot change between the point of performing its final action and becoming quiescent. Hence
each 𝑎’s snapshot in 𝑄 agrees with its knowledge set at time 𝑡 𝑓 . QED.

5.1.1 Finalized sets

Given a consistent collage𝑄 , is it possible to determine whether the actors dom(𝑄) are quies-
cent? Let us begin by giving an alternative characterization of quiescent actors.

Lemma 5.2. Let 𝑎 be an actor at time 𝑡 and let 𝑆 be the closure of {𝑎}. Then 𝑎 is quiescent if
and only if the actors of 𝑆 are idle and mutually quiescent, i.e. there are no undelivered messages
between actors of 𝑆 .

Proof. By definition, 𝑎 is quiescent if and only if every actor that can potentially reach𝑎 is blocked.
Notice that the closure 𝑆 is precisely the set of actors that can potentially reach 𝑎. Hence, if 𝑎 is
quiescent then the actors of 𝑆 are blocked, i.e. idle and have no undelivered messages from any
actor.

Conversely, let the actors of 𝑆 be idle and mutually quiescent. Could any of them have unde-
livered messages from actors outside 𝑆? The basic property Lemma 4.1 shows that this cannot
occur; any sender of such a message must be in 𝑆 . Hence the actors of 𝑆 are all blocked and 𝑎 is
quiescent. QED.

By the above lemma, we can only conclude that the actors of dom(𝑄) are quiescent if dom(𝑄)
is closed, mutually quiescent, and all the actors are idle. This last condition is automatically
satisfied by our communication protocol, since only idle actors take snapshots. In order to check
the other two conditions, we will inspect the snapshots themselves.

36

CHAPTER 5. Quiescence Detection

To check that dom(𝑄) is closed, recall that every unreleased refob 𝑥 : 𝑎 ⊸ 𝑏 has a chain,
(𝑥1 : 𝑎1 ⊸ 𝑏), . . . , (𝑥𝑛 : 𝑎𝑛 ⊸ 𝑏). If dom(𝑄) is quiescent, then there can be no undelivered info

messages. Hence 𝑥 must satisfy the following predicate:

Definition 5.2. Let 𝑄 ⊢ Chain(𝑥 : 𝑎 ⊸ 𝑏) if there exist (𝑥1 : 𝑎1 ⊸ 𝑏), . . . , (𝑥𝑛 : 𝑎𝑛 ⊸ 𝑏) such
that:

1. 𝑄 ⊢ Created(𝑥1) and 𝑄 ⊬ Released(𝑥1);
2. For all 𝑖 < 𝑛, 𝑄 ⊢ CreatedUsing(𝑥𝑖, 𝑥𝑖+1) and 𝑄 ⊬ Released(𝑥𝑖+1);
3. 𝑎𝑛 = 𝑎 and 𝑥𝑛 = 𝑥 .

Checking where dom(𝑄) is closed therefore amounts to checking that 𝑄 ⊢ Chain(𝑥 : 𝑎 ⊸ 𝑏)
and 𝑏 ∈ 𝑄 always implies 𝑎 ∈ 𝑄 .

To decide whether dom(𝑄) is mutually quiescent, we need to check that there are no unde-
livered messages along each unreleased refob 𝑥 : 𝑎 ⊸ 𝑏 where 𝑎, 𝑏 ∈ dom(𝑄). In a consistent
collage, we can do so by inspecting the message counts of 𝑎 and 𝑏 for 𝑥 . Hence 𝑥 must satisfy the
following predicate:

Definition 5.3. Let 𝑄 ⊢ Relevant(𝑥 : 𝑎 ⊸ 𝑏) if there exists 𝑛 such that 𝑄 ⊢ Active(𝑥) ∧
Sent(𝑥, 𝑛) ∧ Received(𝑥, 𝑛).

Together, we can use these predicates to characterize a collage from a closed, quiescent set of
actors.

Definition 5.4. A collage 𝑄 is finalized if, for all 𝑏 ∈ dom(𝑄) and for all 𝑥 : 𝑎 ⊸ 𝑏,
1. 𝑄 ⊢ Chain(𝑥) implies 𝑎 ∈ 𝑄 ; and
2. 𝑄 ⊢ Chain(𝑥) implies 𝑄 ⊢ Relevant(𝑥).

The first condition ensures that dom(𝑄) is closed; 𝑄 ⊢ Chain(𝑥 : 𝑎 ⊸ 𝑏) implies that 𝑎 is
a potential inverse acquaintance of 𝑏. The second condition ensures that dom(𝑄) is mutually
quiescent: between any two actors 𝑎, 𝑏 ∈ dom(𝑄), the message counts for any unreleased refob
𝑥 : 𝑎 ⊸ 𝑏 must agree.

If finalized sets𝑄 correspond to closed sets of quiescent actors 𝑆 , then we would expect that a
consistent snapshot of 𝑆 is finalized. This is indeed the case:

Theorem 5.1. Let 𝑄 be a consistent collage at time 𝑡 of a closed set of quiescent actors 𝑆 . Then
𝑄 is finalized.

Proof. First, we show that if 𝑏 ∈ dom(𝑄) and 𝑥 : 𝑎 ⊸ 𝑏 is an unreleased refob at time 𝑡 , then
𝑄 ⊢ Chain(𝑥) ∧ Active(𝑥) ∧ Sent(𝑥, 𝑛) ∧ Received(𝑥, 𝑛) for some 𝑛.

• 𝑄 ⊢ Chain(𝑥) follows from Lemma 4.4 because 𝑏 is blocked and 𝑆 is closed.

37

CHAPTER 5. Quiescence Detection

• 𝑄 ⊢ Active(𝑥) holds because 𝑥 must be activated: if 𝑥 were pending then 𝑎 would be
unblocked and if 𝑥 were deactivated then 𝑏 would be unblocked.

• 𝑄 ⊢ Sent(𝑥, 𝑛) ∧Received(𝑥, 𝑛) holds because there are no undelivered messages between
𝑎 and 𝑏 at time 𝑡 , so the send and receive counts of 𝑥 at time 𝑡 must agree.

Now it suffices to show that, if𝑄 ⊢ Chain(𝑥), then 𝑥 : 𝑎 ⊸ 𝑏 is unreleased at time 𝑡 . There are
two cases: Either 𝑄 (𝑏) ⊢ Created(𝑥) or 𝑄 (𝑐) ⊢ CreatedUsing(𝑦, 𝑥) for some 𝑐,𝑦. In both cases,
𝑥 has been created before time 𝑡 . Since 𝑄 is consistent and 𝑄 (𝑏) ⊬ Released(𝑥), it follows from
Lemma 4.2 that 𝑏 has not yet received a release message for 𝑥 . Hence 𝑥 is unreleased at time
𝑡 . QED.

By contrapositive, if𝑄 is not finalized then it cannot be a consistent collage from a closed set of
quiescent actors. Recall also that any collage from quiescent actors is guaranteed to be consistent
(Lemma 5.1). Hence, if𝑄 is not finalized, then either some actor in𝑄 is not quiescent or dom(𝑄)
is not closed. The latter case indicates that there is insufficient information to conclude whether
the actors of dom(𝑄) are quiescent; they may or may not be reachable by an unblocked actor
outside of dom(𝑄).

We now show that, surprisingly, the converse of Theorem 5.1 also holds: any finalized collage
𝑄 necessarily describes a closed set of quiescent actors, with each snapshot taken some point
after the actor’s final action. By Lemma 5.1, such a collage is also consistent.

Given a collage 𝑄 taken before some time 𝑡 𝑓 , we write 𝑄𝑡 to denote those snapshots in 𝑄 that
were taken before time 𝑡 < 𝑡 𝑓 . If 𝑎 ∈ dom(𝑄), we denote the time of 𝑎’s snapshot as 𝑡𝑎 .

Theorem 5.2. Let 𝑄 be a finalized collage at time 𝑡 𝑓 . Then for all times 𝑡 :
1. If 𝑏 ∈ dom(𝑄𝑡) and 𝑥 : 𝑎 ⊸ 𝑏 is unreleased, then 𝑄 ⊢ Chain(𝑥).
2. The actors of 𝑄𝑡 are all blocked.

In particular 𝑄𝑡 = 𝑄 , when 𝑡 ≥ 𝑡 𝑓 .

Proof. Proof by induction on 𝑡 . Notice that these two properties trivially hold in the initial con-
figuration because 𝑄0 = ∅.
For the induction step, assume both properties hold at time 𝑡 and call them IH-1 and IH-2,

respectively. We show that IH-1 and IH-2 are preserved by any legal transition 𝜅
𝑒−→ 𝜅′.

Snapshot(𝑏,Φ) Suppose 𝑏 ∈ dom(𝑄) takes a snapshot at time 𝑡 . We show that if 𝑥 : 𝑎 ⊸ 𝑏 is
unreleased at time 𝑡 , then 𝑄 ⊢ Chain(𝑥) and there are no undelivered messages along 𝑥 from 𝑎

to 𝑏. We do this with the help of two lemmas.

Lemma 5.3. If𝑄 ⊢ Chain(𝑥 : 𝑎 ⊸ 𝑏), then 𝑥 is unreleased at time 𝑡 and there are no undelivered
messages along 𝑥 at time 𝑡 . Moreover, if 𝑡𝑎 > 𝑡 , then there are no undelivered messages along 𝑥
throughout the interval [𝑡, 𝑡𝑎].

38

CHAPTER 5. Quiescence Detection

Proof (Lemma). Since 𝑄 ⊢ Relevant(𝑥 : 𝑎 ⊸ 𝑏), we have 𝑎 ∈ dom(𝑄) and 𝑄 ⊢ Active(𝑥) and
𝑄 ⊢ Sent(𝑥, 𝑛) ∧ Received(𝑥, 𝑛) for some 𝑛.

Consider the case when 𝑡𝑎 > 𝑡 . Since 𝑄 (𝑎) ⊢ Active(𝑥), 𝑥 is not deactivated and therefore
not released at 𝑡𝑎 or 𝑡 . Hence, by Lemma 4.3, every message sent along 𝑥 before 𝑡𝑎 was received
before 𝑡 . Since message sends precede receipts, each of those messages was sent before 𝑡 . Hence
there are no undelivered messages along 𝑥 throughout [𝑡, 𝑡𝑎].
Now consider the case when 𝑡𝑎 < 𝑡 . Since 𝑄 (𝑎) ⊢ Active(𝑥), 𝑥 is not deactivated and not

released at 𝑡𝑎 . By IH-2, 𝑎 was blocked throughout the interval [𝑡𝑎, 𝑡], so it could not have sent
a release message. Hence 𝑥 is still not deactivated at 𝑡 and therefore not released at 𝑡 . By
Lemma 4.3, all messages sent along 𝑥 before 𝑡𝑎 must have been delivered before 𝑡 . Hence, there
are no undelivered messages along 𝑥 at time 𝑡 . QED.

Lemma 5.4. Let 𝑥1 : 𝑎1 ⊸ 𝑏, . . . , 𝑥𝑛 : 𝑎𝑛 ⊸ 𝑏 be a chain to 𝑥 : 𝑎 ⊸ 𝑏 at 𝑡 . Then 𝑄 ⊢ Chain(𝑥).

Proof (Lemma). We prove by induction on the length of the chain that𝑄 ⊢ Chain(𝑥𝑖) for all 𝑖 ≤ 𝑛.
Base case: By the definition of a chain, 𝛼𝑡 (𝑏) ⊢ Created(𝑥1) and 𝛼𝑡 (𝑏) ⊬ Released(𝑥1). Since
𝑏’s snapshot happens at time 𝑡 , we must have 𝑄 (𝑏) ⊢ Created(𝑥1) and 𝑄 (𝑏) ⊬ Released(𝑥1).
Induction step: Assume 𝑄 ⊢ Chain(𝑥𝑖). Notice that 𝑄 ⊬ Released(𝑥𝑖+1) because 𝑥𝑖+1 is unre-
leased at the time of 𝑏’s snapshot. Hence, it suffices to show that 𝑄 ⊢ CreatedUsing(𝑥𝑖, 𝑥𝑖+1).
Since 𝑄 ⊢ Relevant(𝑥𝑖), we must have 𝑎𝑖 ∈ dom(𝑄). Let 𝑡𝑖 be the time of 𝑎𝑖 ’s snapshot; we

will show 𝛼𝑡𝑖 (𝑎𝑖) ⊢ CreatedUsing(𝑥𝑖, 𝑥𝑖+1).
By the definition of a chain, either the message [𝑏 ⊳ info(𝑥𝑖, 𝑥𝑖+1)] is in transit at time 𝑡 , or

𝛼𝑡 (𝑎𝑖) ⊢ CreatedUsing(𝑥𝑖, 𝑥𝑖+1). But the first case is impossible by Lemma 5.3, so we only need
to consider the latter.

Consider the case where 𝑡𝑖 > 𝑡 . Lemma 5.3 implies that 𝑎𝑖 cannot perform the event SendInfo(
𝑥𝑖, 𝑥𝑖+1, 𝑎𝑖+1, 𝑏) during [𝑡, 𝑡𝑖]. Hence 𝛼𝑡𝑖 (𝑎𝑖) ⊢ CreatedUsing(𝑥𝑖, 𝑥𝑖+1).

Now consider the case where 𝑡𝑖 < 𝑡 . By IH-2, 𝑎𝑖 must have been blocked throughout the
interval [𝑡𝑖, 𝑡]. Hence 𝑎𝑖 could not have created any refobs during this interval, so 𝑥𝑖+1 must have
been created before 𝑡𝑖 . This implies 𝛼𝑡𝑖 (𝑎𝑖) ⊢ CreatedUsing(𝑥𝑖, 𝑥𝑖+1). QED.

Lemma 5.4 implies that 𝑏 cannot be in the root set. If it were, then by the Chain Lemma there
would be a refob 𝑦 : 𝑐 ⊸ 𝑏 with a chain where 𝑐 is an external actor. Since 𝑄 ⊢ Chain(𝑦), there
would need to be a snapshot from 𝑐 in 𝑄—but external actors do not take snapshots, so this is
impossible.

Since 𝑏 is not in the root set, there must be a chain to every unreleased refob 𝑥 : 𝑎 ⊸ 𝑏. By
Lemma 5.4,𝑄 ⊢ Chain(𝑥). By Lemma 5.3, there are no undelivered messages to 𝑏 along 𝑥 at time

39

CHAPTER 5. Quiescence Detection

𝑡 . Since 𝑏 can only have undelivered messages along unreleased refobs (Lemma 4.1), the actor is
indeed blocked.

Send(𝑥, ®𝑦, ®𝑧, 𝑎, 𝑏, ®𝑐) In order to maintain IH-2, we must show that if 𝑏 ∈ dom(𝑄𝑡) then this
event cannot occur. So suppose 𝑏 ∈ dom(𝑄𝑡). By IH-1, we must have 𝑄 ⊢ Chain(𝑥 : 𝑎 ⊸ 𝑏),
so 𝑎 ∈ dom(𝑄). By IH-2, we moreover have 𝑎 ∉ dom(𝑄𝑡)—otherwise 𝑎 would be blocked and
unable to send this message. Since 𝑄 ⊢ Relevant(𝑥), we must have 𝑄 (𝑎) ⊢ Sent(𝑥, 𝑛) and
𝑄 (𝑏) ⊢ Received(𝑥, 𝑛) for some 𝑛. Hence 𝑥 is not deactivated at 𝑡𝑎 and unreleased at 𝑡𝑏 . By
Lemma 4.3, every message sent before 𝑡𝑎 is received before 𝑡𝑏 . Hence 𝑎 cannot send this message
to 𝑏 because 𝑡𝑎 > 𝑡 > 𝑡𝑏 .
In order tomaintain IH-1, wewill show that if one of the refobs sent to𝑏 in this step is 𝑧 : 𝑏 ⊸ 𝑐 ,

where 𝑐 ∈ dom(𝑄𝑡), then 𝑄 ⊢ Chain(𝑧). In the configuration that follows this Send event,
CreatedUsing(𝑦, 𝑧) occurs in𝑎’s knowledge set. By the same argument as above, 𝑎 ∈ dom(𝑄)\𝑄𝑡

and 𝑄 (𝑎) ⊢ Sent(𝑦, 𝑛) and 𝑄 (𝑐) ⊢ Received(𝑦, 𝑛) for some 𝑛. Hence 𝑎 cannot perform the
SendInfo(𝑦, 𝑧, 𝑎, 𝑏, 𝑐) event before 𝑡𝑎 , so 𝑄 (𝑎) ⊢ CreatedUsing(𝑦, 𝑧). Since 𝑄 ⊢ Chain(𝑦) ∧
CreatedUsing(𝑦, 𝑧) and 𝑄 ⊬ Released(𝑧), we have 𝑄 ⊢ Chain(𝑧).

SendInfo(𝑦, 𝑧, 𝑎, 𝑏, 𝑐) By the same argument as above, 𝑎 ∉ dom(𝑄𝑡) cannot send an info

message to 𝑏 ∈ dom(𝑄𝑡) without violating message counts, so IH-2 is preserved.

SendRelease(𝑥, 𝑎, 𝑏) Suppose that 𝑎 ∉ dom(𝑄𝑡) and 𝑏 ∈ dom(𝑄𝑡). By IH-1,𝑄 ⊢ Chain(𝑥) at
time 𝑡 . Since 𝑄 ⊢ Relevant(𝑥), it follows that 𝑄 (𝑎) ⊢ Active(𝑥). Hence 𝑎 cannot deactivate 𝑥
and IH-2 is preserved.

In(𝑎, 𝑅) By IH-1, every potential inverse acquaintance of an actor in 𝑄𝑡 is also in 𝑄 . Hence
none of the actors in 𝑄𝑡 is a receptionist and this rule does not affect the invariants.

Out(𝑥, 𝑏, 𝑅) Suppose (𝑦 : 𝑏 ⊸ 𝑐) ∈ 𝑅 where 𝑐 ∈ dom(𝑄𝑡). Then 𝑦 is unreleased and 𝑄 ⊢
Chain(𝑦) and 𝑏 ∈ dom(𝑄). But this is impossible because 𝑏 is an external actor and external
actors do not take snapshots.

QED.

Corollary 5.1 (Safety). If𝑄 is a finalized collage at time 𝑡 𝑓 then the actors in𝑄 are all quiescent
at 𝑡 𝑓 .

Proof. Theorem 5.2 implies that, at 𝑡 𝑓 , all the actors in𝑄 are blocked. Together with the fact that
𝑄 is finalized, it also implies that 𝑄 is closed under the potential inverse acquaintance relation

40

CHAPTER 5. Quiescence Detection

at 𝑡 𝑓 . Hence every actor that can potentially reach 𝑏 ∈ dom(𝑄) at 𝑡 𝑓 is blocked, so by definition
every 𝑏 ∈ dom(𝑄) is quiescent at 𝑡 𝑓 . QED.

Recall that a garbage collector detects quiescent actors by receiving actor snapshots and pe-
riodically looking for finalized subsets. It is now simple to see that this algorithm is live, under
reasonable fairness assumptions:

Theorem 5.3 (Liveness). If every actor eventually takes a snapshot after performing an Idle,
Info, or Release event, then every quiescent actor is eventually part of a finalized collage.

Proof. If an actor 𝑎 is quiescent, then the closure 𝑆 of {𝑎} is a quiescent set of actors. Every actor
eventually takes a snapshot after taking its final action and the resulting collage is consistent, by
Lemma 5.1. Then Theorem 5.1 implies that the resulting snapshots is finalized. QED.

5.1.2 Strongly finalized sets

Note that our definition of finalized sets differs from the definition which originally appeared
in [56]. This old definition, which we now call “strongly finalized”, used 𝑄 ⊢ Unreleased(𝑥)
instead of 𝑄 ⊢ Chain(𝑥):

Definition 5.5. a collage 𝑄 is strongly finalized if, for all 𝑏 ∈ dom(𝑄) and for all 𝑥 : 𝑎 ⊸ 𝑏,
𝑄 ⊢ Unreleased(𝑥) implies 𝑄 ⊢ Relevant(𝑥).

In fact, the two notions of finalized are equivalent. However, in the process of developing the
theory in Sections 5.2 and 5.3, we found this old definition to be inconvenient.

Notice that any strongly finalized 𝑄 is also finalized because 𝑄 ⊢ Chain(𝑥) implies 𝑄 ⊢
Unreleased(𝑥). However, in an arbitrary set𝑄 ,𝑄 ⊢ Unreleased(𝑥) does not imply𝑄 ⊢ Chain(𝑥);
there could exist 𝑎, 𝑏, 𝑐 ∈ dom(𝑄) such that 𝑄 (𝑎) ⊢ CreatedUsing(𝑥 : 𝑎 ⊸ 𝑐,𝑦 : 𝑏 ⊸ 𝑐) but
𝑄 ⊬ Chain(𝑥). Could such a situation occur in a finalized 𝑄? We prove below that no, this is
impossible:

Theorem 5.4. If 𝑄 is finalized then 𝑄 is strongly finalized.

Proof. We will show that if 𝑄 is finalized, then 𝑄 ⊢ Unreleased(𝑥 : 𝑎 ⊸ 𝑏) and 𝑏 ∈ dom(𝑄)
implies 𝑄 ⊢ Chain(𝑥 : 𝑎 ⊸ 𝑏).

Note that 𝑄 is consistent at some time 𝑡 𝑓 , since dom(𝑄) is a closed quiescent set of actors
where each snapshot was taken after the actor’s final action.

By definition, 𝑄 ⊢ Unreleased(𝑥 : 𝑎 ⊸ 𝑏) implies that 𝑄 ⊬ Released(𝑥) and either (1) 𝑄 ⊢
Created(𝑥) or (2) 𝑄 ⊢ Chain(𝑦) ∧ CreatedUsing(𝑦, 𝑥) for some 𝑦 : 𝑐 ⊸ 𝑏.
In case (1), we have a trivial chain 𝑄 ⊢ Chain(𝑥).

41

CHAPTER 5. Quiescence Detection

In case (2), notice that we must have 𝑄 ⊢ Active(𝑦) because 𝑄 ⊢ Relevant(𝑦). Since 𝑄

is consistent, 𝑦 must be an unreleased refob at 𝑡 𝑓 . Due to Lemma 4.4, there must be a chain of
unreleased refobs (𝑦1 : 𝑐1 ⊸ 𝑏), . . . , (𝑦𝑛 : 𝑐𝑛 ⊸ 𝑏) at 𝑡 𝑓 . Again since𝑄 is consistent, wemust have
𝑄 ⊢ Created(𝑦1) and 𝑄 ⊢ CreatedUsing(𝑦𝑖, 𝑦𝑖+1) for each 𝑖 < 𝑛 and 𝑄 ⊬ Released(𝑦𝑖) for each
𝑖 ≤ 𝑛. Hence 𝑄 ⊢ Chain(𝑦). Since also 𝑄 ⊢ CreatedUsing(𝑦, 𝑥) and 𝑄 ⊬ Released(𝑥), we can
“extend” this chain to derive 𝑄 ⊢ Chain(𝑥). QED.

Thanks to this theorem, we can use the two definitions interchangeably.

5.2 Maximal Finalized Subsets

In the previous section, we showed that a finalized collage corresponds to a closed set of quies-
cent actors. Hence, the problem of garbage collection reduces to finding all the finalized subsets
of an arbitrary collage 𝑄 . In this section, we show that there is in fact a single largest finalized
subset 𝑄 𝑓 ⊆ 𝑄 that contains all other finalized subsets. We then show that 𝑄 𝑓 can be computed
in linear time by removing all snapshots that cannot appear in a finalized subset.

Originally, we presented a slightly different algorithm in [56]. It operates similarly to the new
algorithm, iteratively removing snapshots that appear not to be in a finalized subset. However,
we subsequently discovered throughmodel checking that the original algorithm could sometimes
be overzealous: the presence of certain “stale” snapshots in 𝑄 can cause other snapshots to be
unnecessarily removed. In otherwords, the computed set is finalized but not necessarilymaximal.
Nevertheless, since the original algorithm can have better cache locality than the new algorithm,
it may be more practical for real systems. We present the algorithm again in Section 5.2.2 and go
on to prove that it eventually detects all quiescent actors, under reasonable fairness conditions.

5.2.1 Chain Algorithm

Let us first show that a maximum finalized subset always exists. Notice that finalized sets are
closed under union when they agree on dom(𝑄1) ∩ dom(𝑄2):

Lemma 5.5. Let𝑄1, 𝑄2 be finalized collages that agree at their intersection, i.e. ∀𝑎 ∈ dom(𝑄1) ∩
dom(𝑄2), 𝑄1(𝑎) = 𝑄2(𝑎). Then 𝑄1 ∪𝑄2 is also finalized.

Proof. Suppose there exists 𝑥 : 𝑎 ⊸ 𝑏 such that𝑄1 ∪𝑄2 ⊢ Chain(𝑥) and𝑄1 ∪𝑄2 ⊬ Relevant(𝑥).
Let (𝑥1 : 𝑎1 ⊸ 𝑏), . . . , (𝑥𝑛 : 𝑎𝑛 ⊸ 𝑏) be the chain.

Let 𝑄 be either 𝑄1 or 𝑄2; we prove by induction on 𝑛 that, if 𝑏 ∈ dom(𝑄), then ∀𝑖 ≤ 𝑛, 𝑄 ⊢
Chain(𝑥𝑖). If 𝑛 = 1 then 𝑄 (𝑏) ⊢ Created(𝑥1) and 𝑄 (𝑏) ⊬ Released(𝑥1) implies 𝑄 ⊢ Chain(𝑥1).

42

CHAPTER 5. Quiescence Detection

For 𝑛 > 1, 𝑄 ⊢ Chain(𝑥𝑛−1) implies 𝑄 ⊢ Relevant(𝑥𝑛−1) since 𝑄 is finalized, and therefore
𝑎𝑛−1 ∈ dom(𝑄). Hence 𝑄 (𝑎𝑛−1) ⊢ CreatedUsing(𝑥𝑛−1, 𝑥𝑛), which implies 𝑄 ⊢ Chain(𝑥𝑛).

Since each 𝑄1, 𝑄2 is finalized, we must therefore have 𝑄 ⊢ Relevant(𝑥), i.e. 𝑄 ⊢ Active(𝑥) ∧
Sent(𝑥, 𝑛)∧Received(𝑥, 𝑛) for some𝑛. By definition of (⊢), it follows that𝑄1∪𝑄2 ⊢ Relevant(𝑥).

QED.

Any two finalized subsets of 𝑄 will satisfy the condition of this lemma. Hence the maximum
finalized subset 𝑄 𝑓 is the union of all finalized subsets of 𝑄 .

Next, we characterize which snapshots in 𝑄 can and cannot appear in a finalized subset of 𝑄 .
To this end, we define the following useful concept:

Definition 5.6. We say that 𝑏 depends on 𝑎 in 𝑄 if 𝑎 = 𝑏 or there is a sequence of one or more
refobs (𝑥1 : 𝑎1 ⊸ 𝑎2), . . . , (𝑥𝑛 : 𝑎𝑛−1 ⊸ 𝑎𝑛) where 𝑎 = 𝑎1 and 𝑏 = 𝑎𝑛 and, for each 𝑖 < 𝑛, 𝑄 ⊢
Chain(𝑥𝑖 : 𝑎𝑖 ⊸ 𝑎𝑖+1). Hence the “depends on” relation is reflexive and transitive.

The following lemmas show that if there exists 𝑎 ∈ dom(𝑄) such that 𝑎 ∉ dom(𝑄 𝑓), then every
𝑏 that depends on 𝑎 in 𝑄 also cannot appear in 𝑄 𝑓 .

Lemma 5.6. If𝑄 ⊢ Chain(𝑥 : 𝑎 ⊸ 𝑏) then, for any finalized subset𝑄 𝑓 of𝑄 , if 𝑏 ∈ dom(𝑄 𝑓) then
𝑄 𝑓 ⊢ Chain(𝑥 : 𝑎 ⊸ 𝑏).

Proof. Proof by induction on the length of the chain (𝑥1 : 𝑎1 ⊸ 𝑏), . . . , (𝑥𝑛 : 𝑎𝑛 ⊸ 𝑏).
If 𝑛 = 1 then 𝑄 (𝑏) ⊢ Created(𝑥1) and 𝑄 (𝑏) ⊬ Released(𝑥1). Hence any subset 𝑄 𝑓 of 𝑄 must

have 𝑄 𝑓 ⊢ Chain(𝑥1).
If 𝑛 > 1, assume 𝑄 𝑓 ⊢ Chain(𝑥𝑛−1). Since 𝑄 𝑓 is finalized, 𝑎𝑛−1 ∈ dom(𝑄 𝑓). Since 𝑄 (𝑎𝑛−1) ⊢

CreatedUsing(𝑥𝑛−1, 𝑥𝑛) and 𝑄 (𝑏) ⊬ Released(𝑥𝑛), it follows that 𝑄 𝑓 ⊢ Chain(𝑥𝑛). QED.

Lemma 5.7. If 𝑏 depends on 𝑎 in 𝑄 , then every finalized subset of 𝑄 containing 𝑏 must also
contain 𝑎.

Proof. If 𝑎 = 𝑏 then the lemma trivially holds. We prove that this must hold for nontrivial se-
quences by induction on the length of the sequence (𝑥1 : 𝑎1 ⊸ 𝑎2), . . . , (𝑥𝑛 : 𝑎𝑛−1 ⊸ 𝑎𝑛).

If 𝑛 = 1 then 𝑄 ⊢ Chain(𝑥 : 𝑎 ⊸ 𝑏). Then 𝑄 𝑓 ⊢ Chain(𝑥 : 𝑎 ⊸ 𝑏) for any finalized subset 𝑄 𝑓

containing 𝑏. Since 𝑄 𝑓 is finalized, we must also have 𝑄 𝑓 ⊢ Relevant(𝑥 : 𝑎 ⊸ 𝑏) and therefore
𝑎 ∈ dom(𝑄 𝑓).

For 𝑛 > 1, assume any finalized subset containing 𝑎𝑛−1 must also contain 𝑎1. By the same ar-
gument as above, any finalized subset containing 𝑎𝑛 must contain 𝑎𝑛−1 and therefore also contain
𝑎1. QED.

We can also use the notion of dependency to give a new characterization of finalized sets:

43

CHAPTER 5. Quiescence Detection

Definition 5.7. 𝑐 is finalized in𝑄 if, for all 𝑏 on which 𝑐 depends, for all 𝑥 : 𝑎 ⊸ 𝑏,𝑄 ⊢ Chain(𝑥)
implies 𝑄 ⊢ Relevant(𝑥).

Lemma 5.8. 𝑐 is finalized in 𝑄 if and only if 𝑐 is in a finalized subset of 𝑄 .

Proof. If 𝑐 is finalized in 𝑄 , let 𝑄 𝑓 be a subset of 𝑄 containing only snapshots of actors on which
𝑐 depends. To see that𝑄 𝑓 is finalized, first notice that each 𝑏 ∈ dom(𝑄 𝑓) has a sequence of refobs
(𝑥1 : 𝑎1 ⊸ 𝑎2), . . . , (𝑥𝑛 : 𝑎𝑛−1 ⊸ 𝑎𝑛) where 𝑏 = 𝑎1 and 𝑐 = 𝑎𝑛 and 𝑄 ⊢ Chain(𝑥𝑖 : 𝑎𝑖 ⊸ 𝑎𝑖+1 for
each 𝑖 < 𝑛. For any (𝑥 : 𝑎 ⊸ 𝑏), 𝑄 𝑓 ⊢ Chain(𝑥 : 𝑎 ⊸ 𝑏) implies 𝑄 ⊢ Chain(𝑥 : 𝑎 ⊸ 𝑏) and
therefore 𝑐 depends on 𝑎 in 𝑄 . Hence 𝑄 ⊢ Relevant(𝑥) and therefore 𝑄 𝑓 ⊢ Relevant(𝑥).
Conversely, let 𝑐 be in a finalized subset 𝑄 𝑓 and consider a sequence of refobs (𝑥1 : 𝑎1 ⊸ 𝑎2),

. . . , (𝑥𝑛 : 𝑎𝑛−1 ⊸ 𝑎𝑛) where𝑄 ⊢ Chain(𝑥𝑖 : 𝑎𝑖 ⊸ 𝑎𝑖+1 for each 𝑖 < 𝑛. Then 𝑎𝑖 ∈ dom(𝑄 𝑓) for each
𝑖 ≤ 𝑛. Since 𝑄 𝑓 is finalized, 𝑄 𝑓 ⊢ Relevant(𝑥𝑖) for each 𝑖 < 𝑛. Hence 𝑄 ⊢ Relevant(𝑥𝑖) for each
𝑖 < 𝑛. QED.

Since 𝑐 ∈ 𝑄 𝑓 if and only if 𝑐 is finalized in𝑄 , it follows that 𝑐 ∉ 𝑄 𝑓 if and only if 𝑐 is not finalized
in𝑄 . Hence, to find the maximum finalized subset of𝑄 it suffices to remove every snapshot that
is not finalized in 𝑄 .

Algorithm 5.1: Compute the largest finalized subset of 𝑄
Data: 𝑄 is an arbitrary collage
Result: 𝑆3 is the largest finalized subset of 𝑄
𝑆1 ← {𝑏 ∈ dom(𝑄) : ∃𝑥, 𝑄 ⊢ Chain(𝑥 : 𝑎 ⊸ 𝑏) and 𝑄 ⊬ Relevant(𝑥 : 𝑎 ⊸ 𝑏)};
𝑆2 ← {𝑎 ∈ dom(𝑄) : ∃𝑏 ∈ 𝑆1, 𝑎 depends on 𝑏};
𝑆3 ← dom(𝑄) \ 𝑆2;

Theorem 5.5. Algorithm 5.1 computes the largest finalized subset of 𝑄 .

Proof. Clearly, an actor is not finalized in 𝑄 if it depends on one of the actors of 𝑆1. Hence 𝑆2 is
precisely the set of all actors that are not finalized in 𝑄 . Its complement, 𝑆3, is therefore the set
of all finalized actors in 𝑄 . QED.

5.2.2 Heuristic algorithm

Although the algorithm above has𝑂 (𝑚) time complexity, where𝑚 is the number of unreleased
refobs in 𝑄 , it can suffer from poor locality: finding every 𝑥 : 𝑎 ⊸ 𝑏 such that 𝑄 ⊢ Chain(𝑥)
requires tracing a path from 𝑏 to all of its potential inverse acquaintances using the chains of
CreatedUsing facts.

44

CHAPTER 5. Quiescence Detection

One way to address this problem is to keep the CreatedUsing chains short, by having actors
not keep the CreatedUsing fact in their knowledge set for long periods of time. In the extreme
case, actors can immediately perform the SendInfo rule whenever they create a refob. This
relieves the garbage collector from dealing with CreatedUsing chains entirely, at the cost of
increased control messages between actors.

Another interesting approach is for the garbage collector to use a heuristic to find some final-
ized subset, not necessarily the largest one. For our heuristic, notice that 𝑄 ⊢ Chain(𝑥) implies
𝑄 ⊢ Unreleased(𝑥) in any collage 𝑄 . This motivates a new definition:

Definition 5.8. 𝑏 potentially depends on 𝑎 in 𝑄 if 𝑎 = 𝑏 or there is a sequence of one or more
refobs (𝑥1 : 𝑎1 ⊸ 𝑎2), . . . , (𝑥𝑛 : 𝑎𝑛−1 ⊸ 𝑎𝑛) where 𝑎 = 𝑎1 and 𝑏 = 𝑎𝑛 and, for each 𝑖 < 𝑛, 𝑄 ⊢
Unreleased(𝑥𝑖 : 𝑎𝑖 ⊸ 𝑎𝑖+1).

Notice that if 𝑏 depends on 𝑎, then 𝑏 also potentially depends on 𝑎; the latter is a coarser
relation than the former.

Our heuristic algorithm is identical to the original, except that 𝑆2 is the set of all actors that
potentially depend on 𝑆1. Since the “potentially depends” relation is coarser than the “depends”
relation, every snapshot in the resulting set is necessarily in the maximum finalized subset.

Algorithm 5.2: Compute a finalized subset of 𝑄
Data: 𝑄 is an arbitrary collage
Result: 𝑆3 is a finalized subset of 𝑄
𝑆1 ← {𝑏 ∈ dom(𝑄) : ∃𝑥, 𝑄 ⊢ Chain(𝑥 : 𝑎 ⊸ 𝑏) and 𝑄 ⊬ Relevant(𝑥 : 𝑎 ⊸ 𝑏)};
𝑆2 ← {𝑎 ∈ dom(𝑄) : ∃𝑏 ∈ 𝑆1, 𝑎 potentially depends on 𝑏};
𝑆3 ← dom(𝑄) \ 𝑆2;

The following lemma shows that, indeed, only “stale” snapshots prevent the resulting set from
being the largest finalized subset.

Lemma 5.9. Let𝑄 be an arbitrary collage at time 𝑡 , and𝑄 𝑓 the largest finalized subset of𝑄 . Let
𝑄′ be another collage, all taken after time 𝑡 , such that dom(𝑄′) ∩ dom(𝑄) = ∅.

Then for all𝑏 ∈ dom(𝑄 𝑓), for all 𝑥 : 𝑎 ⊸ 𝑏,𝑄′∪𝑄 𝑓 ⊢ Unreleased(𝑥 : 𝑎 ⊸ 𝑏) implies𝑄′∪𝑄 𝑓 ⊢
Chain(𝑥 : 𝑎 ⊸ 𝑏).

Proof. Since 𝑄 𝑓 is finalized, 𝑄 𝑓 ⊢ Unreleased(𝑥 : 𝑎 ⊸ 𝑏) implies 𝑄 𝑓 ⊢ Chain(𝑥 : 𝑎 ⊸ 𝑏). More-
over, 𝑄 𝑓 is a consistent closed snapshot at all times 𝑡 ′ ≥ 𝑡 . Hence, for ant 𝑏 ∈ dom(𝑄 𝑓), if
𝑥 : 𝑎 ⊸ 𝑏 is unreleased at time 𝑡 ′ then 𝑎 ∈ dom(𝑄 𝑓).

Now let𝑄′∪𝑄 𝑓 ⊢ Unreleased(𝑥 : 𝑎 ⊸ 𝑏). By definition, thismeans (𝑄′∪𝑄 𝑓) (𝑏) ⊬ Released(𝑥)
and there exists some 𝑐 such that (𝑄′ ∪𝑄 𝑓) (𝑐) ⊢ Created(𝑥).

45

CHAPTER 5. Quiescence Detection

If 𝑐 ∈ dom(𝑄 𝑓) then𝑄 𝑓 ⊢ Unreleased(𝑥) and therefore𝑄 𝑓 ⊢ Chain(𝑥) and therefore𝑄′∪𝑄 𝑓 ⊢
Chain(𝑥).

Now suppose 𝑐 ∈ dom(𝑄′) \ dom(𝑄 𝑓). This implies 𝑐 ≠ 𝑏 and therefore, for some 𝑦 : 𝑐 ⊸ 𝑏,
𝑄′(𝑐) ⊢ CreatedUsing(𝑦, 𝑥). This implies that 𝑄′(𝑐) ⊢ Active(𝑦), so 𝑦 is unreleased at the time
of 𝑐’s snapshot 𝑡𝑐 . But since dom(𝑄 𝑓) is closed at time 𝑡𝑐 , this implies 𝑐 ∈ dom(𝑄 𝑓) after all; a
contradiction. Hence 𝑐 ∈ dom(𝑄 𝑓), so 𝑄′ ∪𝑄 𝑓 ⊢ Chain(𝑥) by the argument above. QED.

Hence, if every non-quiescent actor eventually takes a snapshot, a garbage collector running
the heuristic algorithm will eventually detect all quiescent garbage.

5.3 Cooperative Garbage Collection

Up to this point we have assumed the existence of a single garbage collector that eventually
receives all snapshots. However, there is no reason this must be a centralized entity. For instance,
we can view a multicore actor system as a composition of 𝑛 actor systems; one for each processor
core. It would be natural to have a garbage collector for each system, dedicated to detecting and
collecting quiescent actors in that system. To detect cycles quiescent sets of actors distributed
across multiple systems, the garbage collectors can gossip their local snapshots amongst them-
selves; eventually every garbage collector will obtain enough snapshots to detect all local quies-
cent actors. Moreover, since the actor model is location-transparent, this same strategy extends
to distributed multicore systems as well.

More formally, the cooperative garbage collection problem is for two garbage collectors, with
disjoint snapshot sets 𝑄1, 𝑄2, to find maximal subsets 𝑄̂1 ⊆ 𝑄1, 𝑄̂2 ⊆ 𝑄2, such that 𝑄̂1 ∪ 𝑄̂2

is finalized. For simplicity, we assume that neither 𝑄1 nor 𝑄2 has any finalized subsets, since
such quiescent actors could be detected without cooperation. Although we only consider the
two-party case here, the discussion naturally generalizes to 𝑛 garbage collectors.
In this formalism, the simple strategy amounts to having the first garbage collector send its

entire snapshot set 𝑄1 to the second garbage collector, and vice versa. This is clearly inefficient
for two reasons. Firstly, the two garbage collectors must perform duplicate work to compute
the maximum finalized subset of 𝑄1 ∪ 𝑄2. Secondly, each snapshot set seems to contain signif-
icantly more information than is necessary to compute 𝑄̂1, 𝑄̂2; we might expect, for example,
that it is only necessary to pass along snapshots from actors at the “border” of 𝑄1, 𝑄2 (e.g. the
receptionists).

In this section, we address both of the above concerns. We begin by defining potentially final-
ized subsets of𝑄1 and𝑄2, which omit any snapshots that a priori cannot be finalized in𝑄1 ∪𝑄2.
Every actor in a potentially finalized set 𝑄 depends on one or more of the receptionists in 𝑄 .

46

CHAPTER 5. Quiescence Detection

Hence, computing 𝑄̂1, 𝑄̂2 reduces to finding the finalized receptionists of𝑄1, 𝑄2. With this insight,
we then show how to compute summaries 𝑄̃1, 𝑄̃2 of𝑄1, 𝑄2 such that the finalized receptionists in
𝑄̃1 ∪ 𝑄̃2 coincide with those of 𝑄1 ∪𝑄2. Garbage collectors can therefore simply exchange sum-
maries to find the finalized receptionists. Since summaries can be significantly smaller than the
original collage, this technique reduces the amount of data exchanged and reduces the amount
of computation needed to detect finalized receptionists.

5.3.1 Potentially finalized sets

An actor 𝑎 in 𝑄1 could potentially be finalized in 𝑄1 ∪ 𝑄2 if there exists 𝑄′ disjoint from 𝑄1,
such that 𝑎 is finalized in 𝑄1 ∪𝑄′. This motivates the following definition:

Definition 5.9. 𝑐 is potentially finalized in𝑄 if, for all 𝑏 that 𝑐 depends on,𝑄 ⊢ Chain(𝑥 : 𝑎 ⊸ 𝑏)
implies either 𝑄 ⊢ Relevant(𝑥) or 𝑎 ∉ dom(𝑄).

That is, 𝑐 would be finalized in𝑄 if it did not depend on some actors outside of𝑄 . We say that
a set 𝑄 is potentially finalized if every actor in 𝑄 is potentially finalized in 𝑄 .
Notice that if 𝑐 is not potentially finalized in𝑄 , then 𝑐 depends on some 𝑏 which has an irrele-

vant chain in𝑄 . Such a 𝑐 is guaranteed not to be finalized in𝑄1∪𝑄2, for any𝑄2. This means that
any actor in 𝑄𝑖 that is not potentially finalized in 𝑄𝑖 can safely be removed from consideration,
since it can neither be finalized in 𝑄𝑖 nor 𝑄1 ∪𝑄2.

Viewing dom(𝑄) as an actor system, we call 𝑏 a receptionist in 𝑄 if 𝑏 ∈ dom(𝑄) and 𝑄 ⊢
Chain(𝑥 : 𝑎 ⊸ 𝑏) and 𝑎 ∉ dom(𝑄). The following lemmas show that every 𝑐 ∈ 𝑄𝑖 depends on a
receptionist.

Lemma 5.10. If 𝑎, 𝑏 ∈ dom(𝑄𝑖) and 𝑄𝑖 ⊢ Chain(𝑥 : 𝑎 ⊸ 𝑏) then 𝑄𝑖 ⊢ Relevant(𝑥).

Proof. Immediate from the assumption that 𝑄𝑖 is potentially finalized. QED.

Lemma 5.11. Every 𝑐 ∈ dom(𝑄𝑖) depends on some 𝑏 ∈ dom(𝑄𝑖) where 𝑎 ∉ dom(𝑄𝑖) and
𝑄𝑖 ⊢ Chain(𝑥 : 𝑎 ⊸ 𝑏).

Proof. Immediate from the assumption that 𝑄𝑖 has no finalized subsets. QED.

Moreover, 𝑐 ∈ dom(𝑄𝑖) is finalized in 𝑄1 ∪ 𝑄2 if the receptionists on which it depends are
finalized in 𝑄1 ∪𝑄2:

Lemma 5.12. Let 𝑎 ∈ dom(𝑄1) and 𝑏 ∈ dom(𝑄2), without loss of generality. If 𝑄1 ∪ 𝑄2 ⊢
Chain(𝑥 : 𝑎 ⊸ 𝑏), then 𝑏 is a receptionist in 𝑄2.

47

CHAPTER 5. Quiescence Detection

Proof. Let (𝑥1 : 𝑎1 ⊸ 𝑏), . . . , (𝑥𝑛 : 𝑎𝑛 ⊸ 𝑏) be the chain from 𝑏 to 𝑥 in 𝑄1 ∪ 𝑄2. Since 𝑎𝑛 = 𝑎 ∈
dom(𝑄1), there must be some𝑚 ≤ 𝑛 such that ∀𝑖 < 𝑚, 𝑎𝑖 ∈ dom(𝑄2) and 𝑎𝑚 ∈ dom(𝑄1). Hence
𝑄2 ⊢ Chain(𝑥𝑚) and 𝑎𝑚 ∉ dom(𝑄2), so 𝑏 is a receptionist in 𝑄2. QED.

Lemma 5.13. If 𝑐 ∈ dom(𝑄𝑖) depends on 𝑎 in 𝑄1 ∪ 𝑄2, then either (1) 𝑐 depends on 𝑎 in 𝑄𝑖 , or
(2) 𝑐 depends on a receptionist 𝑏 in 𝑄𝑖 and 𝑏 depends on 𝑎 in 𝑄1 ∪𝑄2.

Proof. Let (𝑥1 : 𝑎1 ⊸ 𝑎2), . . . , (𝑥𝑛 : 𝑎𝑛−1 ⊸ 𝑎𝑛) be the sequence of refobs from 𝑎 to 𝑐 . If ∀𝑖 ≤
𝑛, 𝑎𝑖 ∈ dom(𝑄𝑖), then 𝑐 depends on 𝑎 in 𝑄𝑖 . Otherwise, let𝑚 < 𝑛 be the greatest index such that
𝑎𝑚 ∉ dom(𝑄𝑖); then 𝑎𝑚+1 ∈ dom(𝑄𝑖) is a receptionist that depends on 𝑎 and 𝑐 depends on 𝑎𝑚+1

in 𝑄𝑖 . QED.

Theorem 5.6. a non-receptionist 𝑏 ∈ dom(𝑄𝑖) is finalized in 𝑄1 ∪𝑄2 if and only if every recep-
tionist on which 𝑏 depends in 𝑄𝑖 is finalized in 𝑄1 ∪𝑄2.

Proof. If𝑏 ∈ dom(𝑄𝑖) is finalized in𝑄1∪𝑄2 then every actor onwhich it dependsmust be finalized
in 𝑄1 ∪ 𝑄2. Since every actor on which 𝑏 depends in 𝑄𝑖 is also depended upon in 𝑄1 ∪ 𝑄2, the
receptionists in particular must be finalized.

Conversely, let 𝑐 ∈ dom(𝑄𝑖) and let every receptionist on which 𝑐 depends in 𝑄𝑖 be finalized
in 𝑄1 ∪ 𝑄2. We show that, if 𝑐 depends on 𝑏 in 𝑄1 ∪ 𝑄2 and 𝑄1 ∪ 𝑄2 ⊢ Chain(𝑥 : 𝑎 ⊸ 𝑏), then
𝑄1 ∪𝑄2 ⊢ Relevant(𝑥). By the preceding lemma, there are two cases.

Case 1. 𝑏 ∈ dom(𝑄𝑖) and 𝑐 depends on 𝑏 in 𝑄𝑖 . If 𝑏 is a receptionist of 𝑄𝑖 then it is finalized
by hypothesis; this implies 𝑄1 ∪ 𝑄2 ⊢ Relevant(𝑥) a fortiori. Otherwise, 𝑎 must be in 𝑄𝑖 , so
𝑄𝑖 ⊢ Relevant(𝑥) by Lemma 5.10.

Case 2. 𝑐 depends on a receptionist 𝑏′ in 𝑄𝑖 and 𝑏′ that depends on 𝑏 in 𝑄1 ∪𝑄2. Then 𝑏 must
be finalized because 𝑏′ is finalized. QED.

Corollary 5.2. a receptionist 𝑏 ∈ dom(𝑄2) is finalized in 𝑄1 ∪ 𝑄2 if and only if 𝑄1 ∪ 𝑄2 ⊢
Chain(𝑥 : 𝑎 ⊸ 𝑏) implies 𝑄1 ∪𝑄2 ⊢ Relevant(𝑥) and 𝑎 is finalized.

This formalizes our intuition that snapshots from “internal actors” of 𝑄1 and 𝑄2 are unnec-
essary. It suffices to combine the snapshots of actors at the “boundary” (e.g. receptionists) with
dependency information (i.e. which “boundary” actors depend on which receptionists).

5.3.2 Summaries

Based on the insight from the preceding section, our approach is to compute, for each 𝑄𝑖 , a
smaller collage 𝑄̃𝑖 called its summary. These summaries are designed so that (1) all receptionists
in𝑄𝑖 have snapshots in 𝑄̃𝑖 , and (2) a receptionist is finalized in 𝑄̃1∪𝑄̃2 if and only if it is finalized

48

CHAPTER 5. Quiescence Detection

in 𝑄1 ∪ 𝑄2. We achieve this by removing all facts about the “internal structure” of each 𝑄𝑖 and
then adding new refobs to encode the dependency information of 𝑄𝑖 .

Definition 5.10. The summary 𝑄̃ of 𝑄 is the least collage satisfying the following properties:
For any 𝑥 : 𝑎 ⊸ 𝑏 where 𝑎 ∈ dom(𝑄) and either 𝑏 is a receptionist or 𝑏 ∉ dom(𝑄):
• If 𝑄 (𝑎) ⊢ Active(𝑥) then 𝑄̃ (𝑎) ⊢ Active(𝑥);
• If 𝑄 (𝑎) ⊢ CreatedUsing(𝑥,𝑦) for some 𝑦 then 𝑄̃ (𝑎) ⊢ CreatedUsing(𝑥,𝑦).
• If 𝑄 (𝑎) ⊢ Sent(𝑥, 𝑛) then 𝑄̃ (𝑎) ⊢ Sent(𝑥, 𝑛);

For any 𝑥 : 𝑎 ⊸ 𝑏 where 𝑏 is a receptionist:
• If 𝑄 (𝑏) ⊢ Created(𝑥) then 𝑄̃ (𝑏) ⊢ Created(𝑥);
• If 𝑄 (𝑏) ⊢ Released(𝑥) then 𝑄̃ (𝑏) ⊢ Released(𝑥);
• If 𝑄 (𝑏) ⊢ Received(𝑥, 𝑛) then 𝑄̃ (𝑏) ⊢ Received(𝑥, 𝑛);

If 𝑎, 𝑏 ∈ dom(𝑄̃) and 𝑎 is a receptionist and 𝑏 depends on 𝑎, then 𝑄̃ (𝑎) ⊢ Active(𝑥) and
𝑄̃ (𝑏) ⊢ Created(𝑥) for some new, “fake” refob 𝑥 : 𝑎 ⊸ 𝑏 with a fresh token 𝑥 .

By this definition, both 𝑄1 ∪𝑄2 and 𝑄̃1 ∪ 𝑄̃2 agree about refobs 𝑥 : 𝑎 ⊸ 𝑏 where the owner is
in 𝑄1 (resp. 𝑄2) and the target is in 𝑄2 (resp. 𝑄1):

Lemma 5.14. Let 𝑎 ∈ 𝑄̃1 and 𝑏 ∈ 𝑄̃2. For any 𝑥 : 𝑎 ⊸ 𝑏, if 𝑄1 ∪𝑄2 ⊢ Chain(𝑥) then 𝑄̃1 ∪ 𝑄̃2 ⊢
Chain(𝑥).

Proof. Let 𝑄1 ∪ 𝑄2 ⊢ Chain(𝑥) and let (𝑥1 : 𝑎1 ⊸ 𝑏), . . . , (𝑥𝑛 : 𝑎𝑛 ⊸ 𝑏) be the chain from 𝑏 to 𝑥

in 𝑄1 ∪ 𝑄2. Notice that 𝑏 is a receptionist in 𝑄2. Hence, by definition of the summary, 𝑄̃2(𝑏) ⊢
Created(𝑥1). We now show that 𝑄̃1 ∪ 𝑄̃2 ⊢ CreatedUsing(𝑥𝑖, 𝑥𝑖+1) for each 𝑖 < 𝑛.

If 𝑎𝑖 ∈ dom(𝑄2) then 𝑄2(𝑎𝑖) ⊢ Active(𝑥𝑖) ∧ CreatedUsing(𝑥𝑖, 𝑥𝑖+1). Since 𝑏 is a receptionist
in 𝑄2, 𝑄̃2(𝑎𝑖) ⊢ Active(𝑥𝑖) ∧ CreatedUsing(𝑥𝑖, 𝑥𝑖+1).

Otherwise, 𝑎𝑖 ∈ dom(𝑄1) and therefore 𝑄1(𝑎𝑖) ⊢ Active(𝑥𝑖) ∧ CreatedUsing(𝑥𝑖, 𝑥𝑖+1). Since
𝑏 ∉ dom(𝑄1), 𝑄̃1(𝑎𝑖) ⊢ Active(𝑥𝑖) ∧ CreatedUsing(𝑥𝑖, 𝑥𝑖+1). QED.

Lemma 5.15. Let 𝑎 ∈ 𝑄̃1 and 𝑏 ∈ 𝑄̃2 such that 𝑄1 ∪ 𝑄2 ⊢ Chain(𝑥 : 𝑎 ⊸ 𝑏). Then 𝑄1 ∪ 𝑄2 ⊢
Relevant(𝑥) if and only if 𝑄̃1 ∪ 𝑄̃2 ⊢ Relevant(𝑥).

Proof. Let𝑄1 ∪𝑄2 ⊢ Relevant(𝑥). Then there exists 𝑛 such that𝑄1(𝑎) ⊢ Active(𝑥) ∧ Sent(𝑥, 𝑛)
and 𝑄2(𝑏) ⊢ Received(𝑥, 𝑛). Since 𝑎 ∈ dom(𝑄1) and 𝑏 ∉ dom(𝑄1), 𝑄̃1(𝑎) ⊢ Active(𝑥) ∧
Sent(𝑥, 𝑛). Since 𝑏 is a receptionist in 𝑄2, 𝑄̃2(𝑏) ⊢ Received(𝑥, 𝑛).

Conversely, let 𝑄̃1 ∪ 𝑄̃2 ⊢ Relevant(𝑥). Then there exists 𝑛 such that 𝑄̃1(𝑎) ⊢ Active(𝑥) ∧
Sent(𝑥, 𝑛) and 𝑄̃2(𝑏) ⊢ Received(𝑥, 𝑛). From the definition of 𝑄̃1 and 𝑄̃2, we must also have
𝑄1(𝑎) ⊢ Active(𝑥) ∧ Sent(𝑥, 𝑛) and 𝑄2(𝑏) ⊢ Received(𝑥, 𝑛). QED.

49

CHAPTER 5. Quiescence Detection

The following lemma formalizes our understanding that the refobs in 𝑄̃ serve to abbreviate
the dependency information of 𝑄 :

Lemma 5.16. Let 𝑎, 𝑏 ∈ 𝑄̃1 ∪ 𝑄̃2. If 𝑄̃1 ∪ 𝑄̃2 ⊢ Chain(𝑥 : 𝑎 ⊸ 𝑏) then either:
1. 𝑄1 ∪𝑄2 ⊢ Chain(𝑥 : 𝑎 ⊸ 𝑏); or
2. Both 𝑎, 𝑏 are in some 𝑄𝑖 and 𝑏 depends on 𝑎 in 𝑄𝑖 .

Proof. Let (𝑥1 : 𝑎1 ⊸ 𝑏), . . . , (𝑥𝑛 : 𝑎𝑛 ⊸ 𝑏) be the chain from 𝑏 to 𝑥 in 𝑄̃1∪ 𝑄̃2. Then for some𝑄𝑖 ,
we must have 𝑄̃𝑖 (𝑏) ⊢ Created(𝑥1).

By construction of 𝑄̃𝑖 , this could either be the result of (1) 𝑏 being a receptionist in𝑄𝑖 or (2) 𝑎1
being a receptionist in 𝑄𝑖 and 𝑏 depending on 𝑎1 in 𝑄𝑖 .

Case 1. In this case, we must have 𝑄𝑖 (𝑏) ⊢ Created(𝑥1). Moreover, by construction of 𝑄̃1 and
𝑄̃2, (𝑄̃1 ∪ 𝑄̃2) (𝑎 𝑗) ⊢ CreatedUsing(𝑥 𝑗 , 𝑥 𝑗+1) implies (𝑄1 ∪𝑄2) (𝑎 𝑗) ⊢ CreatedUsing(𝑥 𝑗 , 𝑥 𝑗+1) for
every 𝑗 < 𝑛. Hence 𝑄1 ∪𝑄2 ⊢ Chain(𝑥).
Case 2. In the latter case, the chain can only have length 1 because 𝑥1 is a “fake” refob. Hence

𝑥 = 𝑥1 and 𝑎1 = 𝑎, so indeed 𝑏 depends on 𝑎 in 𝑄𝑖 . QED.

Corollary 5.3. If 𝑏 depends on 𝑎 in 𝑄̃1 ∪ 𝑄̃2 then 𝑏 depends on 𝑎 in 𝑄1 ∪𝑄2.

Conversely, we now show that all the important dependencies have been preserved - namely,
which actors depend on which receptionists.

Lemma 5.17. Let 𝑎, 𝑏 ∈ 𝑄̃1 ∪ 𝑄̃2 and let 𝑎 be a receptionist in 𝑄1. If 𝑏 depends on 𝑎 in 𝑄1 ∪ 𝑄2

then 𝑏 depends on 𝑎 in 𝑄̃1 ∪ 𝑄̃2.

Proof. Let (𝑥1 : 𝑎1 ⊸ 𝑎2), . . . , (𝑥𝑛 : 𝑎𝑛−1 ⊸ 𝑎𝑛) be the sequence of refobs from 𝑎 to 𝑏.
If 𝑛 = 0 then the lemma is trivially satisfied.
If ∀𝑖 ≤ 𝑛, 𝑎𝑖 ∈ dom(𝑄1) then, by construction of 𝑄̃1, there exists 𝑥 : 𝑎 ⊸ 𝑏 such that 𝑄̃1 ⊢

Chain(𝑥).
For the general case, the sequence of refobs may pass between 𝑄1 and 𝑄2 multiple times. We

partition the sequence 𝑥1, . . . , 𝑥𝑛 into a sequence of “runs” ®𝑥1, . . . , ®𝑥𝑚 , such that:
1. For each refob (𝑥 : 𝑎 ⊸ 𝑏) in the first run ®𝑥1, the owner 𝑎 is in𝑄1; for each refob (𝑥 : 𝑎 ⊸ 𝑏)

in the second run ®𝑥2, the owner 𝑎 is in 𝑄2; for each refob (𝑥 : 𝑎 ⊸ 𝑏) in the third run ®𝑥3,
the owner 𝑎 is in 𝑄1; and so on.

2. The concatenation of ®𝑥1, . . . , ®𝑥𝑚 is 𝑥1, . . . , 𝑥𝑛 .
For each run ®𝑥𝑖 , we denote the owner of the first refob as 𝑏𝑖 and the target of the last refob as

𝑐𝑖 . Notice that every 𝑏𝑖 is a receptionist. Hence, by construction of 𝑄̃1 and 𝑄̃2 there is, for each
run ®𝑥𝑖 , a refob 𝑦𝑖 : 𝑏𝑖 ⊸ 𝑐𝑖 such that 𝑄̃1 ∪ 𝑄̃2 ⊢ Chain(𝑦𝑖). Then the sequence of refobs 𝑦1, . . . , 𝑦𝑚
witnesses the fact that 𝑏 depends on 𝑎 in 𝑄̃1 ∪ 𝑄̃2. QED.

50

CHAPTER 5. Quiescence Detection

Finally, we can show that summaries are sound and complete for the intended purpose of
finding finalized receptionists.

Theorem 5.7. Let 𝑐 ∈ 𝑄̃1∪𝑄̃2. Then 𝑐 is finalized in 𝑄̃1∪𝑄̃2 if and only if 𝑐 is finalized in𝑄1∪𝑄2.

Proof. Let 𝑐 be finalized in 𝑄̃1 ∪ 𝑄̃2. We show that, if 𝑐 depends on some 𝑏 in 𝑄1 ∪ 𝑄2 and
𝑄1 ∪𝑄2 ⊢ Chain(𝑥 : 𝑎 ⊸ 𝑏), then 𝑄1 ∪𝑄2 ⊢ Relevant(𝑥).

If 𝑎, 𝑏 are both in some 𝑄𝑖 , then 𝑄𝑖 ⊢ Relevant(𝑥) because 𝑄𝑖 is potentially finalized.
Otherwise, let 𝑎 ∈ dom(𝑄1) and 𝑏 ∈ dom(𝑄2), without loss of generality. Since 𝑄1 ∪ 𝑄2 ⊢

Chain(𝑥), Lemma 5.14 implies 𝑄̃1 ∪ 𝑄̃2 ⊢ Chain(𝑥). Since 𝑏 is a receptionist, 𝑏 ∈ 𝑄̃2. Since 𝑏, 𝑐 ∈
𝑄̃1∪𝑄̃2 and 𝑐 depends on 𝑏 in𝑄1∪𝑄2, 𝑐 must also depend on 𝑏 in 𝑄̃1∪𝑄̃2 by Lemma 5.17. Hence,
since 𝑐 is finalized, 𝑄̃1∪𝑄̃2 ⊢ Relevant(𝑥). This implies, by Lemma 5.15,𝑄1∪𝑄2 ⊢ Relevant(𝑥).

Conversely, let 𝑐 be finalized in𝑄1 ∪𝑄2. We show that, if 𝑐 depends on some 𝑏 in 𝑄̃1 ∪ 𝑄̃2 and
𝑄̃1 ∪ 𝑄̃2 ⊢ Chain(𝑥 : 𝑎 ⊸ 𝑏), then 𝑄̃1 ∪ 𝑄̃2 ⊢ Relevant(𝑥). By Lemma 5.16, there are two cases:

Case 1: 𝑏 depends on 𝑎 in 𝑄𝑖 ; the refob 𝑥 is a “fake” reference created in the process of con-
structing 𝑄̃𝑖 . Then 𝑄̃𝑖 (𝑎) ⊢ Active(𝑥) and 𝑄̃𝑖 ⊢ Sent(𝑥, 0) ∧ Received(𝑥, 0) by construction.
Case 2: 𝑄1 ∪𝑄2 ⊢ Chain(𝑥). Since 𝑐 is finalized and 𝑐 depends on 𝑏 in 𝑄1 ∪𝑄2, we must have

𝑄1 ∪ 𝑄2 ⊢ Relevant(𝑥). Then, since 𝑏, 𝑐 ∈ 𝑄̃1 ∪ 𝑄̃2, by Lemma 5.15, it follows that 𝑄̃1 ∪ 𝑄̃2 ⊢
Relevant(𝑥). QED.

Hence a pair of garbage collectors can find quiescent actors in 𝑄1 ∪𝑄2 by:
1. Garbage collecting all finalized actors in each 𝑄𝑖 ;
2. Removing all actors not potentially finalized in each 𝑄𝑖 ;
3. Computing the summary of the remaining collage and exchanging it with their partner;
4. Removing all potentially unfinalized snapshots in the pair of summaries 𝑄̃1∪𝑄̃2 (optionally

using the Unreleased heuristic from Section 5.2.2);
5. Garbage collecting all actors in𝑄𝑖 that are reachable from a finalized receptionist in 𝑄̃1∪𝑄̃2.

Alternatively, a set of garbage collectors could send their summaries to a parent collector, which
uses the summaries to compute the finalized receptionists and sends this set to each child collec-
tor.

51

Part II

Fault-Recovering Actor GC

52

Part I presented PRL: an actor GC based on reference listing. PRL is sound despite message
reordering and complete when actors always eventually take new snapshots. However, PRL
loses its completeness property if nodes crash so that actors can no longer take snapshots, or
if messages are dropped. PRL therefore relies on the underlying actor framework to guarantee
nodes do not crash and messages are not dropped.

We now turn our attention to actor GC for fault-exposing actor frameworks, such as Akka [26]
and Erlang [57]. Instead of masking failures, these frameworks give programmers the tools to
detect faults and implement custom fault-handling policies [57]. For example, both Akka and
Erlang provide a mechanism called monitoring: if 𝑎 monitors 𝑏, then 𝑎 will be notified when
𝑏 appears to have failed. Erlang and Akka also allow programmers to set timeouts for detect-
ing other kinds of failures: if 𝑎 sets a timeout and the time limit expires before a response was
received, then a message may have been dropped or some other error may have occurred.

Chapter 6 presents an abstract actor model for fault-exposing actor frameworks with moni-
toring, timeouts, crash failures, and message omission failures. We show that the definition of
actor garbage in Part I is no longer adequate in this new model and give two new definitions: one
conservative definition which we call strong quiescence, and another less conservative definition
which we call weak quiescence. Lastly, we compare the failure detection semantics of Erlang and
Akka, and argue that complete actor GC is impossible with Erlang-style semantics. The fault
model we develop in this chapter is the first formalization of an Akka-style fault model.

Chapter 7 presents a sound and complete actor GC for the new fault model. This is the first
cyclic actor GC to detect garbage that results from dropped messages or faulty actors. The new
GC is presented in five stages. The first stage adapts a classic algorithm for global termination
detection [46] for detecting actor garbage in fixed topologies. The second stage builds on the
first stage, adding support for dynamic topologies. The third stage adds support for timeouts
and monitoring. The fourth stage adds support for dropped messages and node failures. The
fifth stage presents efficient data structures for identifying actor garbage and for recovering from
faults.

Chapter 8 presents an implementation of the novel actor GC for Akka. We show how actor
snapshots can be divided into fixed-size entries to reduce memory allocation, and how garbage
collectors can exchange delta graphs to obtain eventually consistent collages. We conclude in
Chapter 9 with an evaluation of our approach using the Savina actor benchmark suite [59] and a
tunable distributed benchmark.

53

6

Fault Model

This chapter describes an abstract model for fault-prone actor systems. Ourmodel is motivated
by the semantics of Distributed Erlang (which has been formally specified [61, 62]) and Akka
Cluster (which has only been described informally [63]). Our model explicitly incorporates nodes
(Figure 6.1) at which actors are located; allows messages to be dropped; allows nodes to crash
spontaneously; and allows nodes and messages to experience unbounded delays. Our model
also incorporates distributed fault handling, based on Akka’s cluster membership service [63]—a
relaxed version of cluster membership in Isis [64]—which allows healthy nodes to exile suspected-
faulty nodes, i.e. remove them from the cluster.

Our model is the first formalization of Akka-style fault detection and monitoring. The model
accounts for several complicating factors, including:

1. Healthy nodes cannot exile suspected-faulty nodes from the cluster all at once; each healthy
node asynchronously makes the decision to close its connection to the suspected-faulty
node.

2. Healthy nodes may be exiled because they were misdiagnosed as crashed (e.g. if the node
was slow to respond to a message).

3. Healthy nodes may crash while another (possibly healthy) node is being exiled from the
system.

4. Actors may continue to receive messages from inverse acquaintances on exiled nodes if
those messages were placed in its mailbox before the nodes were exiled.

5. Actors on healthy nodes monitoring actors on exiled nodes will eventually be notified that
the monitored actors have been exiled.

6. Actors themselves can halt (e.g. because they threw an uncaught exception), causing the
actors that monitor them to be notified.

Criteria 1–3 above are also addressed in the Isis group membership protocol [64], but Criteria
4–6 are unique to our model. We show that, despite all these complications, it is safe to reason
about execution paths as if every healthy node simultaneously exiled the suspected-faulty nodes

54

CHAPTER 6. Fault Model

b

c

d

node 1 node 2

node 3 node 4

e f

g

node failed node

idle

busy halted

a acquainted with b

sticky

a b
a sent message to ba b
a monitors ba b

a

h

m1

m2

Figure 6.1: An example configuration with nodes, halted actors, and monitoring. Actors 𝑐 and 𝑑
are on a crashed node, causing them to “freeze” in their current state. Actor 𝑔 has halted (perhaps
because it threw an uncaught exception). If actors 𝑎 and ℎ do not fail, they will eventually be
notified about the failures of 𝑐 and 𝑔, respectively.

from the cluster. We exploit this property to develop a simplified version of the model, with
respect to which we will prove the correctness of the actor GC in Chapter 7.

Sections 6.1 to 6.3 motivate the basic concepts in the model. Section 6.4 establishes notation
for reasoning about execution paths in the model. Section 6.5 establishes important results about
execution paths with faults and Section 6.6 defines actor garbage. The formal specification of the
fault model is relegated to Appendix A.1.

6.1 Nodes

Our new model extends the model of Part I with the notion of nodes. Every actor is located
on some node and never migrates from one node to another. A node can spontaneously crash or
fail, causing all actors on the node to become frozen and unable to take additional actions. In a
configuration 𝜅, nodes that have not failed are said to be healthy. In an execution path 𝜎 , nodes
are said to be faulty if they fail at some point in time and non-faulty if they never fail in 𝜎 .

When an actor on node 𝑁 sends a message 𝑚 to an actor on another node 𝑁 ′, the message
undergoes two stages. Initially,𝑚 is said to be in-flight from 𝑁 to 𝑁 ′. In-flight messages can be
reordered, dropped, or delayed for arbitrary lengths of time. If 𝑚 arrives at 𝑁 ′, we say that 𝑚

55

CHAPTER 6. Fault Model

has been admitted to 𝑁 ′. Admitted messages can also be reordered, dropped, or delayed before
being delivered to the recipient actor2. The semantic distinction between in-flight and admitted
messages arises when one node suspects that another node is faulty.

Through some unspecified mechanism (e.g., 𝜙-accrual [67]), node 𝑁 ′ may begin suspecting
that 𝑁 has failed. When 𝑁 ′ is confident enough that 𝑁 has failed, 𝑁 ′ can make the irrevocable
decision to shun 𝑁 . Once 𝑁 ′ has shunned 𝑁 , messages from 𝑁 will no longer be admitted to 𝑁 ′.
Subsequently, every other node 𝑁 ′′ must eventually either shun 𝑁 as well or else be shunned by
𝑁 ′. If some group of nodes G1 all shun the remaining nodes G2, we say that G1 has exiled G2. If
this happens then, from the perspective of G1, it looks as if all the actors on G2 have halted and
all in-flight messages from G2 were dropped. We formalize this observation in Theorem 6.1.
In practice, “split-brain scenarios” [63] may arise, where two groups of nodes G1 and G2 exile

one another. Akka applications handle these scenarios by shutting down one of the two par-
titions [68] or by ignoring the issue, allowing both groups of nodes to operate independently.
In any case, split-brain scenarios do not pose a problem for actor GC: nodes in G1 may collect
garbage as if the nodes in G2 crashed, and nodes in G2 may collect garbage as if the nodes in G1
crashed. Without loss of generality, when G1 exiles G2 we may “take the perspective” of G1 and
assume that the actors on G2 have halted.

In Appendix A.1, we model the basic transitions of actors with the following events:
• Idle(𝑎): A busy actor becomes idle.
• Spawn(𝑎, 𝑏, 𝑁): A busy actor 𝑎 spawns actor 𝑏 onto node 𝑁 , assuming neither 𝑁 nor 𝑎’s
node have shunned one another.

• Deactivate(𝑎, 𝑏): Busy actor 𝑎 no longer needs to send messages to 𝑏, so 𝑎 removes all
references to 𝑏 from its local state.

• Send(𝑎, 𝑏,𝑚): Busy actor 𝑎 sends message 𝑚 to one of its acquaintances 𝑏. The message
may contain references to 𝑎’s acquaintances.

• Receive(𝑎,𝑚): Idle actor 𝑎 receives an admitted message𝑚, becoming busy.
We also add the following transitions tomodel the behavior of nodes and the underlying network:

• Admit(𝑚): An in-flight message𝑚 from a non-shunned node is admitted to its destination.
• Drop(𝑚): An in-flight or admitted message𝑚 is dropped.
• Shun(𝑁1, 𝑁2): Node 𝑁1 is shunned by non-faulty node 𝑁2.

Once 𝑁1 has been shunned by 𝑁2, messages from 𝑁1 can no longer be admitted and actors on 𝑁1

cannot spawn children on 𝑁2 (nor vice versa). In addition, once an actor’s node is exiled, it can
2Our model is more lax than the Erlang model of Svensson and Fredlund [61], which only accounts for dropped

messages between nodes and guarantees that messages are not delivered out-of-order. In Akka, messages between
actors on a single machine can be dropped if actors use bounded mailboxes or a stack overflow occurs [65] but
messages will not be delivered out-of-order. Other actor frameworks, such as SALSA [66], do allow messages to be
delivered out-of-order.

56

CHAPTER 6. Fault Model

b c

gf h idle

busy halted

a acquainted with b

sticky

a

a b
a sent message to ba b
a monitors ba bb c

gf h

a

(a)

(b)

c

c

Figure 6.2: Depiction of monitoring in our model. In (a), actor 𝑏 monitors actor 𝑓 that has halted.
In (b), 𝑏 is notified that 𝑓 halted and becomes busy.

no longer perform any events such as spawning or sending messages.
In Section 6.5, we prove that all failed nodes are eventually exiled, but healthy nodes may also

be exiled erroneously—for instance because a temporary network partition caused the healthy
node to be unreachable. Compared to Isis [64], the guarantees in our model are more relaxed: if
𝑁 has shunned 𝑁 ′ then in-flight messages from 𝑁 ′ will not be admitted, but already-admitted
messages can still be delivered to their target actor.

There are several complicating factors that we omit from the model. We do not consider nodes
dynamically joining the configuration. We also do not consider actors migrating from one node
to another; once an actor is spawned, it has a specific node that is its “home”. However, actors
on a node 𝑁 can spawn actors onto another node 𝑁 ′ (provided that 𝑁 has not shunned 𝑁 ′, nor
vice versa). Venkatasubramanian and Talcott showed that actor migration can be simulated in a
model with fixed actor locations [51] although their model does not account for faults.

6.2 Monitoring

Actors in our model can fail in twoways: (1) by halting while processing a message (e.g. throw-
ing an exception or being manually garbage collected), or (2) by being exiled, i.e. being located
on an exiled node. An actor that has not failed is said to be healthy. We say that an actor is faulty
in an execution path if it fails at some point in time; otherwise it is non-faulty.

57

CHAPTER 6. Fault Model

a b

idle

busy halted

a acquainted with b

sticky

a b
a sent message to ba b
a monitors ba b

(a)

a b(b)

a(c) b

Figure 6.3: Depiction of failure signals arriving out-of-order with messages. In (a), actor 𝑏 has an
undelivered message from 𝑎 and also monitors 𝑎. In (b), actor 𝑎 halts. In (c), 𝑏 is notified that 𝑎
halted before 𝑏 receives the message.

A busy actor 𝑎 can request to be notified when an acquaintance 𝑏 fails by monitoring 𝑏. If
𝑎 is a healthy actor monitoring 𝑏 and 𝑏 has failed and 𝑎 is always eventually idle, then 𝑎 will
eventually be notified that 𝑏 has failed and become busy, as shown in Figure 6.2. However, we
do not assume that this notification arrives after all messages from 𝑏 to 𝑎 have been delivered, as
shown in Figure 6.3. This flexibility is consistent with Akka’s message delivery guarantees [65].

In Appendix A.1, we model monitoring with four events:
• Halt(𝑎): The busy actor 𝑎 halts.
• Monitor(𝑎, 𝑏): The busy actor 𝑎 begins monitoring its acquaintance 𝑏.
• Notify(𝑎, 𝑏): The idle actor 𝑎 is notified that 𝑏 failed, causing 𝑎 to become busy.
• Unmonitor(𝑎, 𝑏): The busy actor 𝑎 stops monitoring 𝑏.

6.2.1 Romeo-and-Juliet Problems

Although Akka and Erlang both implement monitoring, the two frameworks have different
semantics when healthy nodes are incorrectly marked as faulty. This is depicted in Figure 6.4,
which adapts a well-known counterexample [69].

In Figure 6.4, actor 𝑗 is inaccuratelymarked as faulty, causing amonitoring actor 𝑟 to be notified
and to halt. Subsequently, actor 𝑗 is notified that 𝑟 halted, causing 𝑗 to halt. This execution path is
possible in Erlang, which implements monitoring with unreliable failure detectors3. In contrast,
this execution path is not possible in Akka because of Akka’s group membership policy [64]:
suspected-faulty nodes are exiled from the cluster, and monitoring actors are not notified until
those nodes have been successfully exiled. However, it is possible for old messages from exiled

3Note that failure detectors in practice can either be inaccurate (actors on healthy nodes become exiled) or in-
complete (actors on failed nodes never become exiled), not both [70].

58

CHAPTER 6. Fault Model

actors to arrive at their destinations, as shown in Figure 6.3.
In Section 6.6, we argue that actors should be garbage collected if they are only potentially

reachable by failed actors. But for an actor framework that uses Erlang-style monitoring to detect
failures, we can never be sure if actors that appear faulty are truly faulty. To preserve soundness,
an actor GC for such a model would need to assume that any apparently-failed actor could come
back to life. By employing a group membership policy as in Akka, an actor GC can collect such
garbage without violating soundness.

6.3 Sticky Actors and Timeouts

In Part I, we modeled an open system in which garbage-collected actors could communicate
with actors in the outside world. Once an actor exposed its address to the outside world, that
actor could no longer be garbage collected automatically. In our new model, we take a simplified
approach: busy actors can register as sticky, allowing them to spontaneously wake up from idle
state as if they received a message from an external actor. Busy sticky actors can also unregister

as sticky to stop receiving such wakeup messages. Sticky actors generalize the notion of “root
actors” used in other actor GCs [17].

Sticky actors are a simple way to model several patterns in practical Akka systems, such as
timeouts. The drawback, compared to the model in Part I, is that an actor cannot register one of
its acquaintances as a sticky actor by sending the acquaintance’s address to an external actor.

In Appendix A.1, we model sticky actors with three events:
• Register(𝑎): The busy actor 𝑎 registers as a sticky actor.
• Wakeup(𝑎): The idle sticky actor 𝑎 becomes busy.
• Unregister(𝑎): The busy sticky actor 𝑎 unregisters as a sticky actor.

6.4 Configurations and Executions

The fault model is formalized as a TLA+ specification [71] in Appendix A.1.4 The specification
defines a labeled transition system (LTS) on configuration 𝜅. The specification defines:

• An Init predicate, which defines the initial configuration 𝜅0; and
• A Next predicate, which defines the transition relation 𝜅 → 𝜅′ on configurations. The
predicate is composed of events Idle(a), Send(a,b,m), . . . that can occur in an execution
path.

4The sources are available at https://github.com/dplyukhin/uigc-spec.

59

https://github.com/dplyukhin/uigc-spec

CHAPTER 6. Fault Model

j r

idle

busy halted

a acquainted with b

sticky

a b
a sent message to ba b
a monitors ba b

(a)

j r(b)

j rr(c)

j(d) r

Figure 6.4: Depiction of the Romeo-and-Juliet problem, which occurs in Erlang-style models but
not Akka-style models. In (a), actors 𝑟 and 𝑗 monitor one another. In (b), 𝑗 is misdiagnosed as
faulty, causing 𝑟 to become busy. In (c), 𝑟 halts. In (d), 𝑗 becomes busy because 𝑟 halted.

We write 𝜅
𝑒−→ 𝜅′ if 𝜅′ can be obtained from 𝜅 via event 𝑒 . An event 𝑒 is legal in 𝜅 if there exists

𝜅′ such that 𝜅
𝑒−→ 𝜅′. An execution path is a (possibly infinite) sequence of events 𝑒1, 𝑒2, . . . such

that 𝜅0
𝑒1−→ 𝜅1

𝑒2−→ 𝜅2
𝑒3−→ We then refer to 𝜅𝑡 as the configuration at time 𝑡 .

Given a finite execution path 𝜎 , we say that the sequence of events 𝜎′ is a legal extension if the
concatenation 𝜎 · 𝜎′ is an execution path. We write cfg(𝜎) to denote the configuration resulting
from finite 𝜎 . We say that configuration 𝜅 is reachable if there exists a finite execution path 𝜎

where 𝜅 = 𝑐 𝑓 𝑔(𝜎). An execution path is complete if it is infinite or ends with a configuration 𝜅

for which there are no legal events.
We say that a property holds at time 𝑡 if it holds in𝜅𝑡 . We also use interval notation [𝑡, 𝑡 ′], [𝑡, 𝑡 ′),
(𝑡, 𝑡 ′], (𝑡, 𝑡 ′) with the usual meaning; for example, a property holds in the interval (𝑡, 𝑡 ′) if it holds
at times 𝑡 + 1, . . . , 𝑡 ′ − 1.

6.5 Faulty Execution Paths

Assume that every execution path 𝜎 has at least one non-faulty node, i.e. a node that never
fails. We also assume the following fairness properties:
(FP1) Let 𝜎 be an execution path in which 𝑁1 is non-faulty and 𝑁2 is faulty. Then eventually 𝑁1

shuns 𝑁2.
(FP2) Let 𝜎 be an execution path in which 𝑁1 has shunned 𝑁2. If 𝑁1 is non-faulty then every

node 𝑁 eventually shuns 𝑁2 or is shunned by 𝑁1.

60

CHAPTER 6. Fault Model

n1 shuns n2 n3 shuns n2
Receive(c,m1)
where c at n3

Send(c,b,m3)
where c at n3, b at n2

Receive(b,m3)
where b at n2

Send(b,c,m4)
where b at n2, c at n3

n3 shuns n2Receive(c,m1)
where c at n3

Send(c,b,m3)
where c at n3, b at n2

Receive(b,m3)
where b at n2

Send(b,c,m4)
where b at n2, c at n3 n1 shuns n2

Figure 6.5: An example of two equivalent execution paths, where the bottom execution path is
obtained by delaying the Shun event.

Note that nodes can fail at any time and healthy nodes can be shunned. For example, in a
configuration with three nodes 𝑁1, 𝑁2, 𝑁3, node 𝑁1 can shun 𝑁2 and then immediately fail. Al-
ternatively, 𝑁1 and 𝑁2 can shun one another and then 𝑁3 fails. Despite these complications, we
prove that the shunning mechanism is well-behaved.

Lemma 6.1. Every faulty node is eventually exiled.

Proof. Immediate from FP1. QED.

Lemma 6.2. If 𝑁1 has shunned 𝑁2 then eventually 𝑁2 will be exiled or 𝑁1 will be exiled.

Proof. Consider any complete execution path 𝜎 in which 𝑁1 shuns 𝑁2. If 𝑁1 fails in 𝜎 then
eventually 𝑁1 will be exiled, as shown in the preceding theorem. Let us therefore assume that 𝑁1

never fails in 𝜎 .
For any prefix of 𝜎 , let G1 be the nodes that have not been shunned by 𝑁1, let G2 be the set of

nodes that have been shunned by 𝑁1, and let G∗2 be the set of nodes shunned by all of G1. Notice
that 𝑁1 ∈ G1 and G∗2 ⊆ G2 for any prefix of 𝜎 .

Let 𝜎0 be a prefix of 𝜎 in which 𝑁1 shuns 𝑁2. In 𝜎0, 𝑁2 ∈ G2.
Let 𝜎1 be an extension of 𝜎0 in which every node either shuns 𝑁2 or is shunned by 𝑁1. This

extension must exist, by FP2.
For each 𝑖 > 1, we define 𝜎𝑖+1 as follows:
1. If G2 = G∗2 in 𝜎𝑖 , then 𝜎𝑖+1 = 𝜎𝑖 ;
2. Otherwise, let 𝑁3 ∈ G2 \ G∗2 in 𝜎𝑖 . Let 𝜎𝑖+1 be an extension of 𝜎𝑖 in which each node either

shuns 𝑁3 or is shunned by 𝑁1. Every node in G1 that does not shun 𝑁3 is moved into G2,
and the remaining nodes in G1 all shun 𝑁3—so 𝑁3 is moved into G∗2 .

Since G∗2 strictly increases between each distinct 𝜎𝑖, 𝜎𝑖+1 and the set of nodes is finite, there
must exist some finite 𝑛 where G2 = G∗2 in 𝜎𝑛 .

By definition, G2 = G∗2 in 𝜎𝑛 implies that every node in G1 has shunned every node in G2. Since
𝑁2 ∈ G2, this implies that 𝑁2 has been exiled. QED.

61

CHAPTER 6. Fault Model

Next, we show that every complete execution path with shunning is equivalent to an execution
path in which nodes are exiled atomically. The result is due to the following lemma, which states
that a Shun(𝑁1, 𝑁2) event at time 𝑡 can always be “pushed further back” to occur at time 𝑡 + 1
instead—unless 𝑁1 became exiled at time 𝑡 . Intuitively, this is because an execution path in which
Shun(𝑁1, 𝑁2) occurs is indistinguishable from an execution path with a network partition, where
messages from 𝑁1 are delayed or dropped. The execution paths become distinguishable once 𝑁1

is exiled because actors on 𝑁2 can be notified actors on 𝑁1 have failed.

Lemma 6.3. Let 𝜅 be a reachable configuration, let 𝑒 = Shun(𝑁1, 𝑁2), and let 𝑒′ be an arbitrary
event. If there exist 𝜅′, 𝜅′′ such that 𝜅

𝑒−→ 𝜅′
𝑒′−→ 𝜅′′ and 𝑁1 is not exiled in 𝜅′, then there exists 𝜅∗

such that 𝜅
𝑒′−→ 𝜅∗

𝑒−→ 𝜅′′.

Proof. By inspecting the definitions of every event in Appendix A.1, one can see that the Shun
event can safely be “swapped” with any event 𝑒′ in an execution path, except if 𝑒′ is a Notify

event. Specifically, if 𝑒′ = Notify(𝑎, 𝑏) where 𝑏 is on a node that became exiled along with 𝑁1,
then there is a causal relationship between 𝑒 and 𝑒′. Thus, for any 𝑒′ where 𝑁1 is not exiled in 𝜅′,
the two events can be swapped. QED.

The above result relies on the fact that, if actor 𝑎 monitors actor 𝑏 and 𝑎’s node shuns 𝑏’s node,
then 𝑎 is not notified that 𝑏 has failed until 𝑏’s node is exiled. If 𝑎 were notified as soon as 𝑎’s
node has shunned 𝑏’s node, then the result would no longer hold.

Theorem6.1. Let𝜎 be an execution path in whichG1 has been exiled byG2. Then𝜎 is equivalent
to an execution path 𝜎′ in which the nodes G1 were atomically exiled by G2: that is, 𝜎′ = 𝜎1 ·𝜎2 ·𝜎3
where 𝜎2 consists only of Shun(𝑁1, 𝑁2) events for 𝑁1 ∈ G1 and 𝑁2 ∈ G2.

Proof. By Lemma 6.3, 𝜎′ can be obtained by delaying all Shun events so that they occur as one
atomic block. QED.

As a consequence of this theorem, we can simplify the model in Appendix A.1 by replacing
the Shun event with an Exile event in which all nodes of G2 are shunned at once. We therefore
do not need to distinguish between healthy exiled nodes and failed exiled nodes.

6.6 Actor Garbage

In Part I, we conservatively defined garbage actors to be actors that are both blocked and only
potentially reachable by blocked actors. In our new model, this definition is both unsound and
incomplete:

62

CHAPTER 6. Fault Model

• The definition is unsound because an actor 𝑎may be blocked and only potentially reachable
by blocked actors, but become busy because 𝑎 monitors another actor 𝑏 that halted. This
is exemplified in Figure 6.1 by actor 𝑎, which is blocked and unreachable by any actor, but
will become busy once notified that 𝑐 has been exiled.

• The definition is incomplete because an actor 𝑎 may be blocked and only potentially reach-
able by halted or exiled actors; such actors are not necessarily blocked, but they are effec-
tively blocked because they cannot send messages to 𝑎. This is exemplified in Figure 6.1 by
actor 𝑓 , which is only potentially reachable by halted actor 𝑔 and exiled actor 𝑑 .

In this section, we generalize the definition of quiescence for our new model. We also discuss
why the resulting definition may be too conservative a criterion for real-world applications, and
develop a more liberal definition of actor garbage: weak quiescence.

6.6.1 Deliverable Messages

Before defining actor garbage in our new model, we must revisit the basic concepts of un-
blocked actors and potential acquaintances.

Recall that an actor 𝑎 is unblocked in configuration𝜅 if 𝑎 is currently busy or there is a message
in 𝜅 that could cause 𝑎 to become busy. In Part I, any undelivered message addressed to 𝑎 could
cause𝑎 to become busy. In our newmodel, this is no longer the case. For instance, if themessage is
in-flight and𝑎’s node has shunned the sender’s node, then themessagewill never be admitted and
therefore never be delivered to its target. From the perspective of actor GC, such “undeliverable”
messages may as well not exist.

This leads us to the notion of deliverable messages, which in turn is used to redefine blocked
actors and potential acquaintances. These terms are formalized in Appendix A.1 by the sets
𝐵𝑙𝑜𝑐𝑘𝑒𝑑 ,𝑈𝑛𝑏𝑙𝑜𝑐𝑘𝑒𝑑 , and the relations 𝑝𝑎𝑐𝑞𝑠 (𝑎), 𝑝𝑖𝑎𝑐𝑞𝑠 (𝑎).

Definition 6.1. An undelivered message is deliverable if it has not been dropped and either:
1. The message has already been admitted; or
2. The message is in-flight and the recipient’s node has not shunned the sender’s node.

Definition 6.2. An actor 𝑎 is blocked if 𝑎 is idle and has no deliverable messages. An actor that
is busy or has deliverable messages is said to be unblocked.

Definition 6.3. An actor 𝑎 is potentially acquainted with actor 𝑏 if 𝑎 has a reference to 𝑏 or 𝑎
has a deliverable message containing a reference to 𝑏. We also say that 𝑎 is a potential inverse

acquaintance of 𝑏.

63

CHAPTER 6. Fault Model

6.6.2 Potentially Unblocked Actors

As in Part I, we assume the live unblocked actor principle [18]:
1. Any busy actor can affect the world, so busy actors are always live (i.e. non-garbage); and
2. Actors that are not busy cannot affect the world except by becoming busy.
Based on this principle, an actor is garbage if and only if it is not busy and there is no future

configuration in which it can become busy.

Definition 6.4. Actor 𝑎 is live in 𝜎 if 𝑎 is healthy and there exists an extension of 𝜎 in which 𝑎

is busy. Otherwise, 𝑎 is garbage in 𝜎 .

In our model, a healthy actor 𝑎 can become busy if and only if one of the following can occur:
1. 𝑎 receives a message from some other actor;
2. 𝑎 is a sticky actor and spontaneously wakes up;
3. 𝑎 monitors an actor that halted; or
4. 𝑎 monitors an actor on a different node that was exiled.
We remark that Definition 6.4 implies that failed actors are always garbage; case (1) can only

occur if 𝑎 is unblocked or a potential acquaintance of a non-garbage actor; case (3) can only occur
if the monitored actor can become busy, i.e. the monitored actor is non-garbage; and case (4) can
always occur if 𝑎 monitors an actor on a different node, because nodes can always spontaneously
halt.

We now characterize the live and garbage actors in terms of configurations.

Definition 6.5. A healthy 𝑎 is potentially unblocked if one of the following holds:
1. 𝑎 is unblocked;
2. 𝑎 is a sticky actor;
3. There exists another actor 𝑏 that is potentially unblocked and 𝑎 is a potential acquaintance

of 𝑏;
4. There exists another actor 𝑏 that has failed or is potentially unblocked and 𝑎 is monitoring

𝑏; or
5. There exists another actor 𝑏 on a different node from 𝑎 and 𝑎 is monitoring 𝑏.

Theorem 6.2. If 𝑎 is potentially unblocked then 𝑎 is live.

Proof. Let 𝑎 be potentially unblocked at the end of finite execution path 𝜎 . We show there exists
an extension 𝜎′ such that 𝑎 is busy in 𝜎 ·𝜎′ by induction on the definition of potentially unblocked
actors:

• If 𝑎 is unblocked then either 𝑎 is busy or there exists an deliverable message to 𝑎. The first
case immediately implies 𝑎 is live. In the second case, 𝑎 can become busy in the next step
by receiving a message.

64

CHAPTER 6. Fault Model

• If 𝑎 is a sticky actor then 𝑎 can become busy by receiving a message from an external actor.
• Let 𝑏 be another actor that is potentially unblocked. By the induction hypothesis, there is
an extension 𝜎′′ such that 𝑏 is busy in 𝜎 · 𝜎′′.

– If 𝑏 is potentially acquainted with 𝑎 then there is an extension 𝜎′′′ such that 𝑏 is busy
and has a reference to 𝑐 in 𝜎 ·𝜎′′ ·𝜎′′′. At this point 𝑏 can send a message to 𝑎, causing
𝑎 to become unblocked.

– If 𝑎 is monitoring 𝑏 then 𝑏 may halt in 𝜎 · 𝜎′′, causing 𝑎 to become unblocked.
• If 𝑎 monitors an actor 𝑏 on a different node, then 𝑎 can become busy if 𝑏 is exiled and 𝑎 is
notified about the failure.

QED.

Theorem 6.3. If 𝑎 is live then 𝑎 is potentially unblocked.

Proof. Assume that 𝑎 is live in 𝜎 at time 𝑡 . We show that 𝑎 is potentially unblocked at time 𝑡 .
First we show, for all times 𝑡 and actors 𝑎, if 𝑎 is potentially unblocked at 𝑡 + 1 then 𝑎 was also

potentially unblocked at 𝑡 or 𝑎 did not exist at 𝑡 . This follows by induction on the definition of
potentially unblocked actors:

• If 𝑎 is unblocked at time 𝑡 + 1 then either (1) 𝑎 is unblocked at time 𝑡 , (2) some busy 𝑏 sent
a message to 𝑎 at time 𝑡 , (3) 𝑎 monitors an actor 𝑏 that failed at time 𝑡 , or (4) 𝑎 was a sticky
actor at time 𝑡 .
Cases (1) and (4) immediately imply that 𝑎 was potentially unblocked at 𝑡 .
Case (2) implies that 𝑏 was acquainted with 𝑎 and live at time 𝑡 , implying that 𝑎 was po-
tentially unblocked at time 𝑡 .
Case (3) implies that 𝑏 was busy (and therefore live) at 𝑡 or 𝑏 was on a remote node and
became exiled at 𝑡 + 1. Both cases imply that 𝑎 was potentially unblocked at 𝑡 .

• If 𝑎 is a sticky actor at time 𝑡 +1 and was not a sticky actor at time 𝑡 , then 𝑎 must have been
busy (and therefore unblocked) at time 𝑡 in order to register.

• Let 𝑏 be another potentially unblocked actor at 𝑡 + 1. By the induction hypothesis, 𝑏 was
potentially unblocked at 𝑡 .

– If 𝑏 is a potentially unblocked potential inverse acquaintance at 𝑡 + 1 and not at 𝑡 ,
then 𝑏 was not potentially acquainted with 𝑎. But this is only possible if 𝑏 was sent
a message containing a reference to 𝑎 at 𝑡 + 1 by some 𝑐 . This implies that 𝑐 was live
and acquainted with 𝑎 at time 𝑡 .

– Suppose that at 𝑡 + 1, 𝑏 is monitored by 𝑎 and 𝑏 is faulty or potentially unblocked, but
this is not the case at 𝑡 . Then either (1) 𝑏 is not monitored by 𝑎 at 𝑡 , or (2) 𝑏 is not
faulty at 𝑡 .
Case (1) can only occur if 𝑎 was busy at 𝑡 and began monitoring 𝑏 at 𝑡 + 1.

65

CHAPTER 6. Fault Model

Case (2) can only occur if 𝑏 halts or becomes exiled at 𝑡 + 1. In either case, because
𝑏 was monitored by 𝑎 at 𝑡 + 1, it must also have been monitored at 𝑡 . Because 𝑏 was
either busy or on a remote node at 𝑡 + 1, 𝑎 was potentially unblocked at 𝑡 .

• If 𝑏 is on a different node from 𝑎 and monitored at 𝑡 + 1 but not 𝑡 , then 𝑎 was busy at 𝑡 and
began monitoring at 𝑡 + 1.

By backward induction on time, it follows that any potentially unblocked actor 𝑎 at time 𝑡 ′

must also be potentially unblocked throughout the interval [𝑡𝑎, 𝑡 ′], where 𝑡𝑎 is the creation time
of 𝑎.

The theorem follows by letting 𝑡 ′ be the time that the live actor 𝑎 becomes busy. Then 𝑎 is
potentially unblocked at 𝑡 ′ and, by the property above, also potentially unblocked at 𝑡 . QED.

Definition 6.6. An actor 𝑎 is strongly quiescent if it is not potentially unblocked, i.e. 𝑎 has failed
or all of the following hold:

1. 𝑎 is blocked;
2. 𝑎 is not a sticky actor;
3. 𝑎’s potential inverse acquaintances are strongly quiescent;
4. 𝑎 only monitors actors that are strongly quiescent and have not failed; and
5. 𝑎 does not monitor any remote actors.

Theorem 6.4. Let 𝜎 be a finite execution path with an actor 𝑎. Then 𝑎 is idle throughout every
legal extension 𝜎′ if and only if 𝑎 is strongly quiescent at the end of 𝜎 .

Proof. Immediate from Theorems 6.2 and 6.3. QED.

The theorem above shows that strong quiescence is a tight characterization of the garbage actors
in a configuration of our model. Despite numerous complications of our new model—dropped
messages, faulty actors, monitor signals arriving out-of-order with messages—the characteriza-
tion is a fairly straightforward generalization of quiescence from Part I.

6.6.3 Weak Quiescence

The above characterization of actor garbage is correct, but somewhat inconvenient from a
practical point of view: actors that monitor remote actors can never be garbage collected. This
could lead to resource leaks, as the following example illustrates.

Consider the case in Hadoop YARN [1] (Figure 6.6) where an “application master” actor am
spawns a local “task manager” actor tm that monitors a remote “task” actor 𝑡 ; the application
master sends work to the taskmanager, which in turn forwards those jobs to the task actor. When
the application master becomes quiescent, we would hope that am, tm, 𝑡 are all garbage collected.

66

CHAPTER 6. Fault Model

tmam t idle

busy halted

a acquainted with b

sticky

a b
a sent message to ba b
a monitors ba b

(a)

tmam t(b)

node failed node

Figure 6.6: An example of a resource leak when relying on strong quiescence. In (a), actors
am, tm, 𝑡 are not garbage. In (b), am is strongly quiescent but tm and 𝑡 prevent one another from
becoming quiescent because they are on distinct nodes.

However, even though 𝑡 can never become busy, it can always fail if its node crashes. Hence
tm, which monitors 𝑡 , will never be strongly quiescent. Moreover, actor 𝑡 cannot be garbage
collected because it is potentially reachable by the non-garbage actor tm. Thus tm and 𝑡 prevent
one another from being collected.

Intuitively, the cycle tm, 𝑡 above should not be garbage collected while 𝑡 is processing messages
(because 𝑡 may halt before the job is complete, requiring tm to take fault-recovery actions) but the
actors should be collected once they have finished processing messages. In theory, it is possible
for 𝑡 ’s node to become exiled and for tm to be notified of the failure—but the useful work is
presumably already done. We therefore offer the following principle:

The weak garbage principle: If an actor remains idle in every non-faulty execution

path, then that actor is garbage.

The drawback of this principle is that it introduces a race condition between the garbage col-
lector and the fault detection mechanism. Suppose that:

1. Actor 𝑎 on node 𝑁 monitors actor 𝑏 on node 𝑁 ′.
2. The garbage collector detects that 𝑎 and 𝑏 are weakly garbage.
3. Node 𝑁 ′ is exiled.
4. Before 𝑎 can be collected as garbage, 𝑎 is notified that 𝑏 failed and 𝑎 becomes busy.
The usefulness of the weak garbage principle, and the possible problems caused by this race

condition, warrants further study. In this thesis, we will content ourselves with formally char-
acterizing “weak garbage” and showing how the actor GC in Chapter 7 can be adapted to detect
either type of garbage.

67

CHAPTER 6. Fault Model

Definition 6.7. Actor 𝑎 is weakly live in 𝜎 if there exists a non-faulty extension of 𝜎 in which 𝑎

is busy. Otherwise, 𝑎 is weakly garbage in 𝜎 .

Definition 6.8. An actor 𝑎 is weakly potentially unblocked if 𝑎 is not halted or exiled and one of
the following holds:

1. 𝑎 is unblocked;
2. 𝑎 is a sticky actor;
3. There exists another actor 𝑏 that is weakly potentially unblocked and 𝑎 is a potential ac-

quaintance of 𝑏; or
4. There exists another actor 𝑏 that is halted or exiled or weakly potentially unblocked and 𝑎

is monitoring 𝑏.

The above definition is identical to Definition 6.5, except for the last condition. Likewise in the
definition below:

Definition 6.9. An actor 𝑎 is weakly quiescent if it is not weakly potentially unblocked, i.e. 𝑎 has
failed or all of the following hold:

1. 𝑎 is blocked;
2. 𝑎 is not a sticky actor;
3. 𝑎’s potential inverse acquaintances are weakly quiescent; and
4. 𝑎 only monitors actors that are also weakly quiescent and have not failed.

Notice that strong quiescence implies weak quiescence, but the converse is not true.

Theorem 6.5. Let 𝜎 be a finite execution path with an actor 𝑎. Then 𝑎 is idle throughout every
legal non-faulty extension 𝜎′ if and only if 𝑎 is weakly quiescent at the end of 𝜎 .

Proof. The result follows by modifying the proofs of Theorem 6.3, Theorem 6.2, and Theorem 6.4
with non-faulty extensions and using Definitions 6.8 and 6.9. QED.

Notice, by comparing Theorems 6.4 and 6.5, that any actor GC detecting weak quiescence can
be made to detect strong quiescence by not collecting the actors that monitor remote actors.

68

7

Fault-Recovering Actor GC

Part I presented PRL, an actor GC based on reference listing. Actors in PRL send control mes-
sages (Info and Release) to identify acyclic garbage and local snapshot messages to identify cyclic
quiescent garbage. In this chapter, we develop a simplified version of PRL in which actors do not
send control messages, leaving all garbage collection up to the GC. This has several advantages:

• Refobs (Chapter 4) and their unique tokens are no longer necessary.
• It suffices for actors to have a single message receive count, rather than message receive
counts for each inverse acquaintance.

• Proofs are simplified because actor snapshots never lose information; an actor’s snapshot
is a summary of all the actions that the actor has performed so far.

We progressively build on this GC, incrementally adding support for sticky actors, monitoring,
dropped messages, and exiled nodes:

1. Section 7.2 introduces the Static model, in which the set of actors and acquaintances is
fixed. This simple model illustrates the basic intuitions and proof techniques that will be
used in the following models.

2. Section 7.3 introduces the Dynamic model, which adds the ability to spawn actors and cre-
ate or remove acquaintances. This model introduces contact tracing to determine whether
two actors are acquainted.

3. Section 7.4 introduces the Monitors model, which adds the ability for actors to halt, moni-
tor other actors, and register as sticky actors. This model shows that monitoring and sticky
actors introduce additional cases to consider, but ultimately these cases do not significantly
increase complexity.

4. Section 7.5 introduces the Exile model, which adds locations and dropped messages, as in
the fault model introduced in Chapter 6. This model introduces the use of ingress actors
and ingress snapshots to compensate for missing actorsnapshots or dropped messages.

5. Section 7.6 introduces data structures called shadow graphs and undo logs for efficiently
identifying garbage in the Exile model.

69

CHAPTER 7. Fault-Recovering Actor GC

a b

fe g

c d

h

idlebusy

a acquainted with ba b
a sent message to ba b

m1

m2, m3

Figure 7.1: A global snapshot of a configuration in the Static model. Actors 𝑏, 𝑐, 𝑔 are quiescent
and 𝑎, 𝑑, 𝑒, 𝑓 , ℎ are not.

The models have all been formalized in TLA+ [71] and are presented in Appendices A.3 to A.8.5

7.1 The Collage-Based Approach

We assume that actors take local snapshots at arbitrary times without coordination. A collec-
tion of snapshots from distinct actors is called a collage. Formally, we represent a collage 𝑆 as a
partial map from actor names to actor snapshots, 𝑆 : ActorName→ ActorState ∪ {Null}.

Informally, we say 𝑆 is consistent if no snapshot in 𝑆 “happens before” any other snapshot. We
also say that a collage is global at time 𝑡 if it contains snapshots from every actor at 𝑡 . A global
consistent collage is called a global snapshot [21]. Many existing actor GCs detect garbage by
first computing a global snapshot [12, 17] and then searching the global snapshot for garbage. In
this chapter, take an alternative approach that does not require collages to be a priori consistent
or global. Instead, actors record information in their local state so that a garbage collector can
find, within any collage 𝑆 , a sub-collage𝑄 that is consistent and corresponds to quiescent actors.

7.1.1 Notation

The specifications in Appendix A use square brackets to apply functions. In proofs, we will
use parentheses instead; thus 𝑎𝑐𝑡𝑜𝑟𝑠 [𝑎] in the specification becomes 𝑎𝑐𝑡𝑜𝑟𝑠 (𝑎) in proofs.

We will abuse notation and use an actor name 𝑎 to stand for its local state 𝑎𝑐𝑡𝑜𝑟𝑠 (𝑎); thus we
will write 𝑎.created(𝑏, 𝑐) in place of 𝑎𝑐𝑡𝑜𝑟𝑠 (𝑎).created(𝑏, 𝑐). To refer to a field in 𝑎’s snapshot in
collage 𝑆 , we write 𝑆 (𝑎).created(𝑏, 𝑐).
We will also frequently “lift” properties about individual actors into properties about sets. For

example, we say a set of actors 𝑄 is quiescent if every 𝑎 ∈ 𝑄 is quiescent.
5The sources are available at https://github.com/dplyukhin/uigc-spec.

70

https://github.com/dplyukhin/uigc-spec

CHAPTER 7. Fault-Recovering Actor GC

7.2 Static Topologies

The Static model consists of 𝑛 actors passing messages in a fixed (but arbitrary) topology.
That is, actors in this model cannot spawn or send references in messages. In this section, we
develop a definition of quiescence that specializes the definition in Section 6.6 and show that
quiescent garbage can be detected using a variant of Mattern’s channel counting algorithm [46].

7.2.1 Model

The Static model is a significantly simplified version of the model in Chapter 6. This model
only includes four events:

1. 𝐼𝑑𝑙𝑒 (𝑎): Busy actor 𝑎 becomes idle, allowing it to receive a new message.
2. 𝑆𝑒𝑛𝑑 (𝑎, 𝑏,𝑚): Busy actor 𝑎 sends 𝑏 a message𝑚.
3. 𝑅𝑒𝑐𝑒𝑖𝑣𝑒 (𝑎,𝑚): Idle actor 𝑎 receives a message𝑚 and becomes busy.
4. 𝑆𝑛𝑎𝑝𝑠ℎ𝑜𝑡 (𝑎): Actor 𝑎 takes a snapshot.
Notice we omit monitoring, locations, failures, sticky actors, etc. The initial configuration

consists of 𝑛 actors in an arbitrary topology; Figure 7.1 shows one such example. In this topology,
we define the following terminology:

Actor 𝑎 is acquainted with 𝑏 if 𝑎’s local state contains a reference to 𝑏; we also say
that 𝑎 is an inverse acquaintance of 𝑏. The set iacqs(𝑏) ranges over the inverse ac-
quaintances of 𝑏.

Reachability is the transitive closure of the acquaintance relation.

An actor 𝑎 is blocked if it is idle and has no undelivered messages. Otherwise, 𝑎 is
said to be unblocked.

For example, actors 𝑎, 𝑓 , ℎ are unblocked in Figure 7.1 and actors 𝑏, 𝑐, 𝑔 can reach 𝑏, 𝑐, 𝑑, 𝑓 , 𝑔,
and ℎ.

We can specialize Definition 6.6 to the Static model:

Definition 7.1. An actor 𝑎 is quiescent if:
1. 𝑎 is blocked; and
2. Every inverse acquaintance of 𝑎 is quiescent.

Using this definition, one can identify quiescent garbage by computing a consistent global
snapshot and searching the snapshot for actors matching this definition. In Figure 7.1, only actors
𝑏, 𝑐, 𝑔 are quiescent; actors 𝑎, 𝑓 , ℎ are not quiescent because they are unblocked and actors 𝑒, 𝑑 are
not quiescent because they are reachable by unblocked actors.

71

CHAPTER 7. Fault-Recovering Actor GC

7.2.2 Apparent Quiescence

Even in this simple model, how can we identify quiescent actors without taking a consistent
global snapshot? In this section, we give an approach for detecting quiescent actors given an
arbitrary collage 𝑆 in the Static model. Actors record the number of messages sent to each
acquaintance and the total number of messages they received. We will prove soundness (if actors
appear quiescent, they are actually quiescent) and completeness (if actors are actually quiescent,
then they will eventually appear quiescent).

Our approach generalizes Mattern’s channel counting algorithm [46]. The channel counting
algorithm uses message send/receive counts to detect global quiescence, i.e. when all actors are
quiescent. We build on the algorithm by (1) detecting quiescence of individual actors instead of
quiescence of the entire system, and (2) only requiring actors to have a single total receive count
instead of a count for each inverse acquaintance.

In our approach, each actor 𝑎 tracks:
• 𝑎.status: An indicator of whether 𝑎 is idle or busy;
• 𝑎.received: The total number of messages 𝑎 received so far; and
• 𝑎.sent(𝑏): The number of messages 𝑎 sent to 𝑏 so far.

In an arbitrary collage 𝑆 , we define what it means to “appear” idle or “appear” blocked in the
obvious way:

𝑎 appears idle if 𝑆 (𝑎).status = idle.

𝑏 appears blocked if 𝑆 (𝑏).received =
∑

𝑎∈iacqs(𝑏) 𝑆 (𝑎) .sent(𝑏).

𝑆 is closed for𝑏 (with respect to inverse acquaintances) if𝑏 ∈ dom(𝑆) implies iacqs(𝑏) ⊆
dom(𝑆).

Recall that 𝑆 is not necessarily global; the notion of closed collages is needed so that appearing
blocked is well-defined.

We can now define what it means for actors to appear quiescent similarly to Definition 7.1:

Definition 7.2. An actor 𝑎 appears quiescent in collage 𝑆 if:
1. 𝑆 is closed for 𝑎;
2. 𝑎 appears blocked; and
3. Every inverse acquaintance 𝑏 of 𝑎 appears quiescent.

Figure 7.2 depicts a sample collage 𝑆 and the actors that appear quiescent within it. Notice that
𝑒 does not appear quiescent because 𝑆 is not closed for 𝑒 , whereas ℎ does not appear quiescent
because it appears unblocked. Throughout the rest of this section, we use 𝑆 to denote a collage
and 𝑄 to denote a closed subset of dom(𝑆) that appears quiescent.

72

CHAPTER 7. Fault-Recovering Actor GC

b cg he

recv: 0
iacqs: {a}

recv: 0
iacqs: {c}
sent(g): 0

recv: 0
iacqs: {b}
sent(h): 2
sent(c): 0

recv: 0
iacqs: {g}
sent(b): 0

recv: 0
iacqs: {g}
sent(d): 0

? b

?e g

c ?

h

recv: 0
sent(g): 0

recv: 0
sent(h): 2
sent(c): 0

recv: 0

recv: 0
sent(b): 0

recv: 0

appears idle

appears busy

a acquainted with ba b

appears quiescent

Figure 7.2: Two views of a collage Static model. The top diagram shows a collage as a collection
of snapshots. The bottom diagram shows the graph induced by the collage; question marks
represent actors that do not have snapshots in the collage.

It is perhaps obvious that if 𝑆 is consistent then the apparently quiescent actors in 𝑆 are indeed
quiescent. But surprisingly, this property holds even if 𝑆 is not a priori consistent because any
subcollage that appears quiescent is necessarily consistent. The result holds by means of a simple
invariant:

(Static-Inv): For each 𝑎 ∈ 𝑄 , if 𝑎 has taken a snapshot then 𝑎 is idle.

To show that (Static-Inv) implies consistency for 𝑄 , we first formalize consistency:

Let 𝑎, 𝑏 ∈ dom(𝑆). There is a forward-crossing message from 𝑎 to 𝑏 if 𝑎 sent a message
before 𝑎’s snapshot that 𝑏 did not receive before 𝑏’s snapshot. Likewise, there is a
backward-crossing message from 𝑎 to 𝑏 if 𝑎 sent a message after 𝑎’s snapshot that 𝑏
received before 𝑏’s snapshot.

A collage 𝑆 is consistent for 𝑎 if there are no backward-crossing messages to 𝑎. A
collage 𝑆 is consistent if there are no backward-crossingmessages for any𝑎 ∈ dom(𝑆).

Lemma 7.1. Let 𝑏 ∈ 𝑄 and let 𝑡 be the time 𝑏 recorded a snapshot. If (Static-Inv) holds up to
time 𝑡 , then there are no forward- or backward-crossing messages to 𝑏.

73

CHAPTER 7. Fault-Recovering Actor GC

a b c

snapshot

message

activation

sent(b): 1

received: 2

sent(b): 1

m1

m2

m3

Figure 7.3: A time diagram depicting how backward-crossing messages can mask the existence
of forward-crossing messages.

Proof. The fact that there are no backward-crossing messages follows immediately from the in-
variant: if an actor 𝑎 took a snapshot before sending a message to 𝑏 and the message was received
before 𝑏 took a snapshot, then 𝑎 must have become busy before 𝑡 . Since any 𝑎 that could send 𝑏
a message is in 𝑄 , this would violate the invariant.
For each actor 𝑎, let recv𝑎,𝑏 equal the number of messages𝑏 received from 𝑎 before𝑏’s snapshot.

In particular, because every 𝑎 that could send a message to 𝑏 is in 𝑄 , we have∑︁
𝑎∈dom(𝑆)

recv𝑎,𝑏 = 𝑆 (𝑏).received. (7.1)

For every 𝑎 ∈ dom(𝑆), let undelivered𝑎,𝑏 equal the number of forward-crossing messages from
𝑎 to𝑏. Because there are no backward-crossing messages, every message𝑏 received from 𝑎 before
𝑏’s snapshot was sent before𝑎’s snapshot, i.e. recv𝑎,𝑏+undelivered𝑎,𝑏 = 𝑆 (𝑎) .sent(𝑏). In particular:

𝑆 (𝑏).received +
∑︁

𝑎∈dom(𝑆)
undelivered𝑎,𝑏 =

∑︁
𝑎∈dom(𝑆)

𝑆 (𝑎).sent(𝑏) (7.2)

Because 𝑏 appears blocked, 𝑆 (𝑏).received =
∑

𝑎∈dom(𝑆) 𝑆 (𝑎).sent(𝑏). Applying Equation (7.2),
this can only be true if undelivered𝑎,𝑏 = 0 for all 𝑎 ∈ dom(𝑆). QED.

The key idea of the soundness proof is to consider the first actor 𝑏 that violates the invariant.
The actor can only become busy from a forward-crossing message, but because𝑏 appears blocked

74

CHAPTER 7. Fault-Recovering Actor GC

a b c

snapshot

message

activation

sent(b): 1

received: 1

sent(b): 0

(a)

a b c

sent(b): 0

received: 1

sent(b): 1

(b)

Figure 7.4: Time diagrams depicting how an actor 𝑏 could become busy after taking a snapshot.

such a message can never arrive.

Theorem 7.1 (Soundness). Let 𝑆 be a collage and 𝑄 a closed subset of dom(𝑆) that appears
quiescent. Then 𝑄 is quiescent.

Proof. Let 𝑡 be the first time that (Static-Inv) is violated. Then some 𝑏 ∈ 𝑄 took a snapshot and
subsequently became busy at 𝑡 .

In Static, actors only become busy by receiving messages. Let 𝑎 be the actor that sent the
message. Necessarily, 𝑎 ∈ iacqs(𝑏) ⊆ dom(𝑆). Note that we may have 𝑎 = 𝑏.

Suppose 𝑎 took a snapshot before sending the message; this is depicted in Figure 7.4 (a). This
violates the assumption that 𝑏 was the first actor to become busy after taking a snapshot.
Suppose instead that 𝑎 took a snapshot after sending the message, as shown in Figure 7.4 (b).

By Lemma 7.1, this forward-crossing is only possible if there is a backward-crossing message
from some 𝑐 . But then 𝑐 violates the assumption that 𝑏 was the first actor to become busy after
taking a snapshot. QED.

We conclude this section by showing that the collage-based approach eventually detects all
quiescent garbage, under a very lax fairness assumption. This result is due to an important prop-
erty of quiescent garbage: any collage collected from quiescent actors after they have become
quiescent is necessarily consistent. Without this property, a garbage collector might never ob-
tain a consistent view of the garbage actors.

75

CHAPTER 7. Fault-Recovering Actor GC

Theorem 7.2 (Completeness). Assume that every actor always eventually takes a snapshot. If 𝑎
is quiescent at time 𝑡 in execution path 𝜎 , then eventually 𝑎 will appear quiescent.

Proof. Let 𝑄 be the closure of {𝑎} with respect to inverse acquaintances. Because 𝑎 is quiescent
at 𝑡 , the closure𝑄 is also quiescent. In any collage with snapshots from𝑄 taken after 𝑡 , all actors
will appear blocked. QED.

7.3 Dynamic Topologies

In this section, we generalize the preceding approach to dynamic topologies. In a dynamic
topology, actors can create references by spawning actors or sending messages that contain actor
names. Actors can also deactivate references by removing an acquaintance’s name from their
local state. From the perspective of garbage collection, the key complication in this model is
determining whether a collage is closed.

7.3.1 Model

The Dynamic model introduces the following events:
1. 𝑆𝑝𝑎𝑤𝑛(𝑎, 𝑏): Busy actor 𝑎 spawns an actor with fresh name 𝑏;
2. 𝐷𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 (𝑎, 𝑏): Busy actor 𝑎 removes all references to 𝑏 from its local state; and
3. 𝑆𝑒𝑛𝑑 (𝑎, 𝑏,𝑚): Sent messages can now contain references to the acquaintances of 𝑎.
Figure 7.5 demonstrates that Definition 7.1 no longer characterizes quiescent actors in the

Dynamic model: at time (1), 𝑐 is blocked and not reachable by any actor; yet at time (3) 𝑐 is
unblocked. The key problem is that reachability does not account for references in undelivered
messages, such as the message sent from 𝑎 to 𝑏 at time (1).

To account for this, we introduce new terminology:

A reference from 𝑎 to 𝑏 is said to be owned by 𝑎 and pointing to 𝑏; we also call it a
𝑏-reference. If 𝑐 sent the reference, then the reference was created by 𝑐 .

Actors may have references in three stages:

1. Pending references: references sent to 𝑎 that have not yet been delivered.
2. Active references: references that 𝑎 has received and not yet deactivated.
3. Deactivated references: references that 𝑎 removed from local state.

We say 𝑎 is potentially acquainted with 𝑏 if 𝑎 has active or pending references to 𝑏.
We also say 𝑎 is a potential inverse acquaintance of 𝑏; the set piacqs(𝑏) ranges over
the potential inverse acquaintances of 𝑏.

Potential reachability is the transitive closure of the potential acquaintance relation.

76

CHAPTER 7. Fault-Recovering Actor GC

b
a

c
message

activation

d

(1)

(2)

(3)

(4)

idle

busy

reference b ca

ab cd

b cd a

b cd a

quiescent

message

forget ca,c

c
c

a,c

c

Figure 7.5: A sample execution in the Dynamic model. On the left is a time diagram. On the right
we see the states of the actors at times (1), (2), (3), and (4).

In light of the new terminology, we see that 𝑐 is not quiescent in Figure 7.5 (1) because 𝑐 is
potentially reachable by the unblocked actor𝑏. We proceed to modify the definition of quiescence
for the Dynamic model; the emphasized portion shows the difference compared to Definition 7.1.

Definition 7.3. An actor 𝑎 is quiescent if:
1. 𝑎 is blocked; and
2. Every potential inverse acquaintance of 𝑎 is quiescent.

7.3.2 Detecting Garbage

In Section 7.2, we identified that a collage must be closed (with respect to inverse acquain-
tances) to appear quiescent. This poses a problem for the Dynamic model, in which actors no
longer know their inverse acquaintances. Indeed, an actor 𝑎’s address could possibly have been
sent to any actor in the system. Figure 7.6 shows one such example, in which a non-quiescent
actor 𝑏 appears blocked because one of its inverse acquaintances, 𝑑 , has not taken a snapshot.
Prior work has coped with this problem by requiring snapshots to be global [12] or by syn-

chronously maintaining inverse reference listings for each actor [42]. In this section, we intro-
duce a more lightweight approach: contact tracing.

77

CHAPTER 7. Fault-Recovering Actor GC

a b c

sent(b): 1

received: 2

sent(b): 1

d

snapshot

message

activation

b

Figure 7.6: An execution illustrating the need for contact tracing.

d e(1)

contact trace

idle

busy

quiescent
reference

d fe(2)
created(e,f): 1

d fe(3)
created(e,f): 1created(d,f): 1

d fe(4)
created(e,f): 1created(d,f): 1

deactivated(f): 1

message

f

f

Figure 7.7: An execution with contact tracing.

78

CHAPTER 7. Fault-Recovering Actor GC

c
b

a
message

activation

d

(1)

(2)

(3)

(4)

contact trace

active reference

ab

abc

abcd

abcd

a c

a

a, b

a

Figure 7.8: An execution in the Dynamic model with contact tracing. The right side of the figure
depicts the contact tracing chains for actor 𝑎 at times 1–4.

7.3.3 Contact Tracing

The key idea of contact tracing is for actors to record whenever they create new references.
As a result, there is always a “contact tracing chain” from an actor to all its potential inverse
acquaintances. We instrument each actor 𝑎 with two new fields:

• 𝑎.created(𝑏, 𝑐): The number of 𝑐-references 𝑎 sent to 𝑏.
• 𝑎.deactivated(𝑏): The number of 𝑏-references that 𝑎 has deactivated.

Figure 7.7 shows a sample execution with contact tracing. Every actor 𝑎 is spawned with a
reference to itself, so created(𝑎, 𝑎) = 1 in 𝑎’s initial state. In addition, if 𝑎 spawned 𝑏, we say the
parent obtained a reference from the child, so created(𝑎, 𝑏) = 1 in the 𝑏’s initial state.

Figure 7.8 depicts an execution in which actors maintain contact tracing information. When 𝑏
spawns 𝑎, there is a direct link from 𝑎 to 𝑏. After 𝑏 sends 𝑐 a reference to 𝑎, there is a link in the
chain from 𝑏 to 𝑐 . After 𝑎 sends 𝑐 a reference to itself, there is also a link in the chain from 𝑎 to 𝑐 .
Subsequently, 𝑐 sends 𝑑 a reference to 𝑎 and deactivates both of its 𝑎-references; despite the fact
that 𝑐 has no active references to 𝑎, there is still a contact tracing link from 𝑐 to 𝑑 . Finally, 𝑑 sends
𝑏 a reference to 𝑎 and deactivates its reference to 𝑎; the only actor that can potentially reach 𝑎 at
time (4) is 𝑏, and there is indeed a path from 𝑎 to 𝑏 using the contact tracing information.

We say that 𝑎 is hereto acquainted with 𝑏 at time 𝑡 if 𝑎 was acquainted with 𝑏 at some
time 𝑡 ′ ≤ 𝑡 . We then call 𝑎 an inverse hereto acquaintance of 𝑏. The set hiacqs(𝑏)
ranges over 𝑏’s hereto inverse acquaintances.

79

CHAPTER 7. Fault-Recovering Actor GC

We say 𝑆 is hereto-closed if 𝑏 ∈ dom(𝑆) implies hiacqs(𝑏) ⊆ dom(𝑆).

7.3.4 Apparent Quiescence

We now define what it means for a collage to “appear” closed, using contact tracing:

Actor 𝑎 appears hereto acquainted with 𝑏 in 𝑆 if
∑

𝑐∈dom(𝑆) 𝑐.created(𝑎, 𝑏) > 0.

Actor 𝑎 appears acquainted with 𝑏 if
∑

𝑐∈dom(𝑆) 𝑐.created(𝑎, 𝑏) > 𝑎.deactivated(𝑏).

A collage 𝑆 appears hereto-closed if, for each 𝑏 ∈ dom(𝑆), all of 𝑏’s apparent hereto
inverse acquaintances are in 𝑆 .

The hereto-closure of 𝑏 includes snapshots from former acquaintances; these snapshots are
needed because they contain contact tracing information and because they may have nonzero
sent(𝑏) counts.

Nowwe generalize the definition of apparently quiescent collages. The highlighted parts show
the changes, compared to Definition 7.2.

Definition 7.4. Actor 𝑏 appears quiescent in collage 𝑆 if:
1. 𝑏 is appears hereto-closed in 𝑆 ;
2. 𝑏 appears blocked in 𝑆 ; and
3. If some 𝑎 appears acquainted with 𝑏, then 𝑎 appears quiescent as well.

Throughout the rest of this section, we use 𝑆 to denote an arbitrary collage and 𝑄 to denote
an arbitrary subset of dom(𝑆) that appears hereto-closed and appears quiescent.
Interestingly, Definition 7.4 does not require 𝑏’s former inverse acquaintances to appear qui-

escent. This reflects the fact that, if 𝑎 is non-garbage and deactivates all its references to 𝑏, then
𝑏 can be garbage collected without waiting for 𝑎 to be collected.

7.3.5 Soundness

In Section 7.2.1, we proved soundness bymeans of an invariant. To account for dynamic topolo-
gies, we strengthen the invariant by adding an extra condition:

(Dynamic-Inv):

1. (Idleness) For each 𝑎 ∈ 𝑄 , if 𝑎 has taken a snapshot then 𝑎 is not busy.
2. (Closure) For each 𝑎 ∈ dom(𝑆), if 𝑎 has taken a snapshot and 𝑎 is acquainted

with some 𝑏 ∈ 𝑄 , then 𝑎 ∈ 𝑄 .

80

CHAPTER 7. Fault-Recovering Actor GC

a b c

snapshot

message

activation

created(d,a): 0

created(c,a): 1

created(b,a): 1

d

a

a

a

Figure 7.9: A time diagram showing an impossible execution, in which 𝑐 creates a reference to
an actor 𝑎 ∈ 𝑄 after 𝑐 takes a snapshot.

We say that a collage 𝑆 is hereto-closed up to time 𝑡 for 𝑏 if all 𝑏’s hereto inverse acquaintances
up to time 𝑡 are contained in dom(𝑆). The following lemma shows that, as long as the invariant
holds, apparently quiescent collages that appear hereto-closed are indeed hereto-closed.

Lemma 7.2. If (Dynamic-Inv) holds up to 𝑡 then 𝑆 is hereto-closed for 𝑄 up to 𝑡 .

Proof. Let 𝑐 ∈ 𝑄 . By induction on time 𝑡 , we show that every actor 𝑏 with a reference to 𝑐 at time
𝑡 must have a snapshot in 𝑆 .

At 𝑡 = 0, there is only one actor 𝑎 with a reference to itself. If 𝑎 ∈ 𝑄 then 𝑎 ∈ dom(𝑆) by
definition.

Assuming the property holds up to time 𝑡 , suppose actor 𝑏 obtains a reference to 𝑐 at time 𝑡 +1.
There are three possibilities.

1. 𝑏 spawned 𝑐 . Then 𝑐 was spawned with 𝑐.created(𝑏, 𝑐) > 0 in its local state. This implies
𝑆 (𝑐).created(𝑏, 𝑐) > 0. Since 𝑄 appears quiescent, 𝑏 must have a snapshot in 𝑆 .

2. 𝑏 = 𝑐 and 𝑐 has just been spawned, thereby obtaining a reference to itself. Again, 𝑐 ∈ 𝑄

implies 𝑏 ∈ dom(𝑆).
3. 𝑏 received a reference to 𝑐 in a message, sent by some 𝑎. Let 𝑡𝑠 be the time when 𝑎

sent the message. Actor 𝑎 must have been acquainted with 𝑐 when it sent the message,
so 𝑎 ∈ dom(𝑆) by the induction hypothesis. Notice that 𝑎.created(𝑏, 𝑐) > 0 at 𝑡𝑠 . By
(Dynamic-Inv), 𝑎 could not have taken a snapshot before sending the message. Hence
𝑆 (𝑎) .created(𝑏, 𝑐) > 0. Since 𝑄 appears quiescent, 𝑏 ∈ dom(𝑆).

81

CHAPTER 7. Fault-Recovering Actor GC

QED.

The lemma above shows that executions such as Figure 7.9 are impossible: if 𝑎 ∈ 𝑄 and 𝑐

obtains a reference to 𝑎, then 𝑐 must be in 𝑄 as well—and therefore cannot receive a message
after taking a snapshot.

The following lemma is a generalization of Lemma 7.1 for dynamic topologies, and has an
identical proof; the key difference is that 𝑆 is now hereto-closed, due to Lemma 7.2.

Lemma 7.3. Let 𝑏 ∈ 𝑄 and let 𝑡 be the time that 𝑏 took a snapshot. If (Dynamic-Inv) holds up
to 𝑡 then there are no forward- or backward-crossing messages to 𝑏.

Next we prove a variation of Lemma 7.3 for messages containing references. The lemma ex-
presses a topological consistency property: if there are no backward-crossing messages contain-
ing references (as in Figure 7.10) then an actor’s apparent acquaintances correspond to its actual
acquaintances.

Let 𝑆 be a collage and 𝑎, 𝑏 ∈ dom(𝑆). There is a forward-crossing 𝑐-reference from 𝑎 to

𝑏 if 𝑎 sent a message before 𝑎’s snapshot that 𝑏 received after 𝑏’s snapshot, and the
message contained a reference to 𝑐 . Likewise, there is a backward-crossing 𝑐-reference
from 𝑎 to 𝑏 if 𝑎 sent a message after 𝑎’s snapshot that 𝑏 received before 𝑏’s snapshot,
and the message contained a reference to 𝑐 .

Lemma 7.4. Let 𝑏 ∈ dom(𝑆) and let 𝑡 be the time that 𝑏 took a snapshot. If (Dynamic-Inv)
holds up to 𝑡 then there are no forward- or backward-crossing 𝑐-references to 𝑏, for any 𝑐 ∈ 𝑄 .
Furthermore, 𝑏 appears acquainted with 𝑐 if and only if 𝑏 is actually acquainted with 𝑐 at the time
of 𝑏’s snapshot.

Proof. The fact that there are no backward-crossing references follows from the invariant: Sup-
pose actor 𝑎 takes a snapshot at 𝑡𝑎; then 𝑎 sends a 𝑐-reference to 𝑏 at 𝑡𝑠 ; and then the reference
is received before 𝑡 . To send the reference, 𝑎 must have had a reference to 𝑐 at 𝑡𝑠 ∈ (𝑡𝑎, 𝑡). By
(Dynamic-Inv), 𝑐 ∈ 𝑄 implies 𝑎 ∈ 𝑄 . But then (Dynamic-Inv) also implies 𝑎 was idle at 𝑡𝑠 , so the
reference could not have been sent in the first place.

We now show that there are no forward-crossing 𝑐-references to 𝑏. Recall that 𝑏 can obtain a
reference to 𝑐 in three ways:

1. Some 𝑎 sent 𝑏 a reference to 𝑐;
2. 𝑏 spawned 𝑐; or
3. 𝑏 = 𝑐 , so 𝑏 was spawned with a reference to itself.

82

CHAPTER 7. Fault-Recovering Actor GC

a b c

snapshot

message

activation

created(b,d): 1

deactivated(d): 2

created(b,d): 1

d

d

d

Figure 7.10: A time diagram with forward- and backward-crossing references. Message𝑚2 is a
backward-crossing 𝑑-reference from 𝑐 to 𝑏. Message𝑚3 is a forward-crossing 𝑑-reference from 𝑎

to 𝑏. The backward-crossing 𝑑-reference causes 𝑏 to appear as if it is not potentially acquainted
with 𝑑 .

For each actor 𝑎 in the execution, let activated𝑎,𝑏 equal the number of 𝑐-references that 𝑏 re-
ceived from 𝑎 before 𝑡 . Any 𝑐-reference that 𝑏 received before 𝑡 must have been sent by an actor
𝑎 that was acquainted with 𝑐 at some earlier time 𝑡 ′ < 𝑡𝑏 . By Lemma 7.2, 𝑎 ∈ dom(𝑆). It follows
that:

self +
∑︁

𝑎∈dom(𝑆)
activated𝑎,𝑏 ≥ 𝑆 (𝑏).deactivated(𝑐), (7.3)

where

self =


1 if 𝑏 = 𝑐 , or if 𝑏 spawned 𝑐 before 𝑡

0 otherwise
(7.4)

That is, 𝑏 could only have deactivated the 𝑐-references that it obtained from itself or actors in
dom(𝑆).

For each 𝑎 ∈ dom(𝑆), let crossing𝑎,𝑏 equal the number of forward-crossing 𝑐-references from
𝑎 to 𝑏. Hence, because we already proved there are no backward-crossing 𝑐-references,

𝑆 (𝑎) .created(𝑏, 𝑐) =

activated𝑎,𝑏 + crossing𝑎,𝑏 if 𝑎 ≠ 𝑏

activated𝑏,𝑏 + crossing𝑏,𝑏 + self otherwise
(7.5)

83

CHAPTER 7. Fault-Recovering Actor GC

There are two cases.
Case 1 (⇒). Assume 𝑏 appears acquainted with 𝑐 . Since 𝑐 ∈ 𝑄 and appears quiescent, 𝑏 ∈ 𝑄 .

Then Lemma 7.3 implies there are no forward-crossing messages to 𝑏. Hence, in particular there
can be no forward-crossing 𝑐-references to 𝑏.
Next we show that 𝑏 is acquainted with 𝑐 at time 𝑡 . Lemma 7.3 implies crossing𝑎,𝑏 = 0 for all 𝑎,

so by Equation (7.5), ∑︁
𝑎∈dom(𝑆)

𝑆 (𝑎).created(𝑏, 𝑐) = self +
∑︁

𝑎∈dom(𝑆)
activated𝑎,𝑏 . (7.6)

Also, since 𝑏 appears acquainted with 𝑐 ,∑︁
𝑎∈dom(𝑆)

𝑆 (𝑎).created(𝑏, 𝑐) > 𝑆 (𝑏).deactivated. (7.7)

Hence
self +

∑︁
𝑎∈dom(𝑆)

activated𝑎,𝑏 > 𝑆 (𝑏).deactivated, (7.8)

i.e. 𝑏 has at least one reference to 𝑐 at time 𝑡 that has not been deactivated.
Case 2 (⇐). Assume 𝑏 does not appear acquainted with 𝑐 . By Equation (7.5):

𝑆 (𝑏).deactivated(𝑐) ≥ self +
∑︁

𝑎∈dom(𝑆)
(activated𝑎,𝑏 + crossing𝑎,𝑏) (7.9)

≥ self +
∑︁

𝑎∈dom(𝑆)
activated𝑎,𝑏 (7.10)

Combining the above inequality with Equation (7.3), we deduce that crossing𝑎,𝑏 = 0 for all 𝑎,
i.e. there are no forward-crossing 𝑐-references. Moreover, every reference 𝑏 obtained for 𝑐 has
been deactivated—so 𝑏 is not acquainted with 𝑐 at time 𝑡 . QED.

Theorem 7.3 (Soundness). Let 𝑆 be a collage and let 𝑄 be a an apparently hereto-closed subset
of dom(𝑆) that appears quiescent. Then 𝑄 is quiescent.

Proof. The result holds as a consequence of (Dynamic-Inv). We prove the invariant holds by
contradiction. Let 𝑡 be the first time the invariant is violated.
Now we consider the two ways the invariant could be violated at time 𝑡 .
Case 1. An actor 𝑏 ∈ 𝑄 is busy after taking a snapshot. Because 𝑏 was idle when it took a

snapshot, it must have become busy at time 𝑡 . In the Dynamic model, actors only become busy
by receiving messages. But by Lemma 7.3, no such message could arrive.

84

CHAPTER 7. Fault-Recovering Actor GC

a

b

snapshot

message

activation

(monitor a)
(register)

(wakeup)

(halt)

signal

a

Figure 7.11: A sample execution in the Monitors model. Actor 𝑎 spawns 𝑏, registers as sticky,
and becomes idle. Actor 𝑏 begins monitoring 𝑎. Later, 𝑎 spontaneously wakes up and then halts,
causing 𝑏 to become busy.

Case 2. An actor 𝑏 ∈ dom(𝑆) \ 𝑄 has taken a snapshot and holds a reference to some 𝑐 ∈ 𝑄 .
By Lemma 7.4, 𝑏 had no reference to 𝑐 at the time of its snapshot and can only have obtained the
reference from some 𝑎 ∈ dom(𝑆) that sent the message after taking a snapshot. This contradicts
the fact that 𝑡 is the first time the invariant is violated.

Thus (Dynamic-Inv) holds for all times 𝑡 an all actors in𝑄 remain idle after taking snapshots.
QED.

7.4 Sticky Actors and Monitoring

In this section, we enrich the Dynamicmodel with halted actors, sticky actors, andmonitoring.
From the perspective of garbage collection, these features add new ways for actors to become
busy (e.g. sticky actors spontaneously waking up) and they add new ways for actors to become
garbage (e.g. if some of their potential inverse acquaintances have halted).

7.4.1 Model

The Monitors model introduces the following events:
1. 𝐻𝑎𝑙𝑡 (𝑎): Busy actor 𝑎 halts. We assume that halted actors can take snapshots, unlike exiled

actors (Section 7.5).

85

CHAPTER 7. Fault-Recovering Actor GC

2. 𝑀𝑜𝑛𝑖𝑡𝑜𝑟 (𝑎, 𝑏): Busy actor 𝑎 begins monitoring its acquaintance 𝑏.
3. 𝑁𝑜𝑡𝑖 𝑓 𝑦 (𝑎, 𝑏): Idle actor 𝑎 that monitors a halted actor 𝑏 becomes busy. Also, 𝑎 stops mon-

itoring 𝑏.
4. 𝑈𝑛𝑚𝑜𝑛𝑖𝑡𝑜𝑟 (𝑎, 𝑏): Busy actor 𝑎 stops monitoring 𝑏.
5. 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟 (𝑎): Busy actor 𝑎 registers as a sticky actor.
6. 𝑊𝑎𝑘𝑒𝑢𝑝 (𝑎): Sticky idle actor 𝑎 becomes busy.
7. 𝑈𝑛𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 (𝑎): Busy sticky actor 𝑎 unregisters as a sticky actor.
Figure 7.11 demonstrates that Definition 7.3 no longer characterizes quiescent actors in the

Monitors model:
• Halted actors are always quiescent because they can never become busy.
• Sticky actors are never quiescent (unless they halted) because they can always sponta-
neously wake up.

• If 𝑏 monitors 𝑎 and 𝑎 can halt, then 𝑏 is not quiescent. Note that if 𝑎 is quiescent then 𝑎

cannot halt.
Fortunately, as observed in Chapter 6, it suffices to modify the Definition 7.3 to account for

these complications in the obvious way:

Definition 7.5. An actor 𝑎 is quiescent if 𝑎 is halted or all of the following hold:
1. 𝑎 is blocked;
2. 𝑎 is not sticky;

3. Every potential inverse acquaintance of 𝑎 is quiescent; and
4. Every actor monitored by 𝑎 is quiescent and not halted.

7.4.2 Apparent Quiescence

To account for the new features in the Monitors model, each actor 𝑎 records the following
additional information:

• 𝑎.isSticky: Indicates whether 𝑎 is sticky.
• 𝑎.monitored: The set of actors monitored by 𝑎.

𝑎 appears halted if 𝑆 (𝑎).status is “halted”.

𝑎 appears sticky if 𝑆 (𝑎).isSticky is true.

𝑎 appears to monitor 𝑏 if 𝑏 ∈ 𝑆 (𝑎).monitored.

Definition 7.4 now generalizes in the obvious way:

Definition 7.6. Actor 𝑏 appears quiescent in collage 𝑆 if 𝑎 appears halted or all of the following
hold:

86

CHAPTER 7. Fault-Recovering Actor GC

snapshot

message activation

signal

a b

(register)

(wakeup)

isSticky: true

created(b,a): 1

a b

monitoring: {a}?

(halt)

a b

monitoring: {a}

(halt)

halted: true

(a)

(b) (c)

Figure 7.12: Three new ways that an actor can become busy after taking a snapshot.

1. 𝑏 is appears hereto-closed in 𝑆 ;
2. 𝑏 appears blocked;
3. 𝑏 does not appear sticky;

4. If some 𝑎 appears acquainted with 𝑏, then 𝑎 appears quiescent; and
5. If some 𝑎 appears monitored by 𝑏, then 𝑎 appears quiescent and does not appear halted.

Adapting the soundness proof of Section 7.3 to Monitors is also straightforward. We use the
same invariant (Dynamic-Inv) and Lemmas 7.2 to 7.4, which continue to hold without modifica-
tion in the new model.

Figure 7.12 shows the three key cases to consider:
1. Actor 𝑎 registers as sticky, takes a snapshot, and spontaneously wakes up.
2. Actor 𝑎, monitored by actor 𝑏, takes a snapshot and then halts.
3. Actor 𝑎, monitored by actor 𝑏, halts and then takes a snapshot.

The first case is addressed by the condition that, if an actor 𝑎 appears sticky, neither 𝑎 nor any of
its apparent acquaintances can appear quiescent. The second case is addressed by the invariant
(Dynamic-Inv): actors can only halt by first becoming busy, and an actor 𝑎 that appears quiescent
can never become busy. The third case is addressed by the condition that, if an actor 𝑎 appears
halted, then the actors that appear to monitor it cannot appear quiescent.

Theorem 7.4 (Soundness). Let 𝑆 be a collage and let 𝑄 be a an apparently hereto-closed subset
of dom(𝑆) that appears quiescent. Then 𝑄 is quiescent.

87

CHAPTER 7. Fault-Recovering Actor GC

Proof. Similarly to the proof in Theorem 7.3, the result follows from the invariant (Dynamic-Inv).
We prove the invariant holds by contradiction. Let 𝑡 be the first time the invariant is violated.
We consider the two ways the invariant could be violated at time 𝑡 .

Case 1. An actor 𝑏 ∈ 𝑄 is busy after taking a snapshot. Because 𝑏 was idle when it took a
snapshot, it must have become busy at time 𝑡 . In the Monitors model, actors can become busy
in three ways:

1. 𝑏 received a message. This is impossible by Lemma 7.3.
2. 𝑏 is sticky and received a wakeup signal. This is impossible because 𝑏 was not sticky at the

time of its snapshot, so 𝑏 would have to become busy at an earlier time 𝑡 ′ < 𝑡 to register.
3. 𝑏 monitors an actor 𝑐 and is notified that 𝑐 halted. This is only possible if 𝑐 was busy at

some 𝑡 ′ < 𝑡 and then 𝑐 halted. Notice that 𝑏 must have been monitoring 𝑐 at the time
of 𝑏’s snapshot so, because 𝑏 appears quiescent, 𝑐 ∈ 𝑄 . Because 𝑐 ∈ 𝑄 and 𝑏 is the first
actor in𝑄 to become busy, 𝑐 cannot have halted after taking a snapshot. Therefore 𝑐 halted
before taking a snapshot—but then 𝑐 appears halted, contradicting the fact that 𝑏 appears
quiescent.

Case 2. Identical to Case 2 in the proof of Theorem 7.3.
Thus (Dynamic-Inv) holds for all times 𝑡 an all actors in𝑄 remain idle after taking snapshots.

QED.

7.5 Dropped Messages and Exiled Nodes

In this section, we introduce faults—namely, dropped messages and exiled nodes—to the Mon-
itors model. From the perspective of the Monitors GC, these faults are indistinguishable from
arbitrary delays: dropped messages appear the same as undelivered messages and exiled actors
appear the same as actors that (unfairly) never get to take a step. To detect garbage that results
from faults, our approach will be to assume the existence of a high-level fault detection mech-
anism (Chapter 6) and to use this mechanism to inform the garbage collector after faults occur.
Chapter 8 expounds on how these fault-detection mechanisms can be implemented.

7.5.1 Model

The Exile model brings the Monitors model in line with the fault model of Chapter 6. As in
that chapter, every actor now has a permanent location and messages must explicitly be admitted

to their destination node before they can be received. Exile adds the events Admit,Drop, Shun

and modifies the events Receive, Spawn, Send,Notify, Snapshot:
1. Admit(𝑚): In-flight message𝑚 from 𝑁1 to 𝑁2 is admitted onto its destination 𝑁2.

88

CHAPTER 7. Fault-Recovering Actor GC

2. Drop(𝑚): Message 𝑚 is removed from the bag of undelivered messages. Note that both
in-flight and admitted messages can be dropped.

3. Shun(𝑁1, 𝑁2): Node 𝑁1 is shunned by 𝑁2, preventing messages from 𝑁1 being admitted to
𝑁2. This event also preventing actors being spawned from𝑁1 to𝑁2 or vice-versa. If a group
of nodes G1 has been shunned by the remaining nodes G2, then the nodes and actors in G1
are said to be exiled.

4. Receive(𝑎,𝑚): Message𝑚 must now be admitted before it can be delivered to its target 𝑎.
5. Spawn(𝑎, 𝑏, 𝑁): Actor 𝑎 spawns 𝑏 onto node 𝑁 . The child’s node can be any node that does

not shun (and is not shunned by) 𝑎’s node.
6. Send(𝑎, 𝑏,𝑚): Actor 𝑎 sends 𝑏 message𝑚. If 𝑎 and 𝑏 are on the same node 𝑁 ,𝑚 is immedi-

ately marked as admitted.
7. Notify(𝑎, 𝑏): Actor 𝑎 is notified that 𝑏 halted or was exiled.
8. Snapshot(𝑎): Actor 𝑎 takes a snapshot, assuming 𝑎 is not exiled.

Note that we do not explicitly model crashing nodes, because they are subsumed by exiled nodes
(Chapter 6).

In executions with dropped messages, collages from hereto-closed sets of quiescent actors will
not necessarily appear quiescent. This can be seen in Figure 7.13:

1. 𝑎 spawns actors 𝑏 and 𝑐;
2. 𝑎 sends 𝑐 a reference to itself;
3. 𝑎 becomes idle;
4. The message is dropped, leaving 𝑎, 𝑏, 𝑐 quiescent.

The actors 𝑎, 𝑏, 𝑐 can never appear quiescent because 𝑎 sent 𝑐 a message that 𝑐 will never receive.
The problem is that the snapshots cannot distinguish a configuration with dropped messages
from a configuration with undelivered messages. The garbage collector therefore needs to detect
when messages (and the references they contain) are dropped to collect all quiescent garbage.

In executions with exiled nodes, it is no longer possible in general to obtain a hereto-closed
collage from quiescent actors. This can be seen in Figure 7.14:

1. 𝑎 is an actor on node 𝑁1;
2. 𝑎 spawns 𝑏 onto node 𝑁2;
3. 𝑎’s node becomes exiled;
4. 𝑏 becomes idle.

Actor 𝑏 is quiescent because it is not sticky, does not monitor any other actor, and cannot receive
messages from any other actor. But in order for 𝑏 to appear quiescent, the garbage collector must
have snapshots from both 𝑎 and 𝑏—this is impossible, because 𝑎 can never take a snapshot.

Whereas recovering from dropped message faults is a relatively simple matter of detecting
when messages are dropped, recovering from exiled node faults is more complex. It does not

89

CHAPTER 7. Fault-Recovering Actor GC

b

c

idle

busy halted

a acquainted with b

sticky

a

a b
a sent message to ba b
a monitors ba b

(2)

created(a,c): 1
recv: 0

created(a,b): 1
recv: 0

created(c,a): 1
sent(c): 1

b

c

a

(3)

created(a,c): 1
recv: 0

created(a,b): 1
recv: 0

created(c,a): 1
sent(c): 1

b

c

a

(4)

created(a,c): 1
recv: 0

created(a,b): 1
recv: 0

created(c,a): 1
sent(c): 1

b

c

a

(1)

created(a,c): 1
recv: 0

created(a,b): 1
recv: 0

a

a

Figure 7.13: An execution in which a dropped message prevents actors from appearing quiescent.

node exiled node

idle

busy halted

a acquainted with b

sticky

a b
a sent message to ba b
a monitors ba b

a1) a2)
created(b,a): 1

b

a3)
created(b,a): 1

b a4)
created(b,a): 1

b

Figure 7.14: An execution in which an exiled node prevents actors from appearing quiescent.

90

CHAPTER 7. Fault-Recovering Actor GC

node exiled node

idle

busy halted

a acquainted with b

sticky

a b
a sent message to ba b
a monitors ba b

ba

dc

(3)

ba

dc

(4)

ba

dc

(1)

ba

dc

(2)b

m2, m
3

a,b
m3

a b

m2

Figure 7.15: An execution in which an exiled node has sent messages, leaving quiescent actors.

91

CHAPTER 7. Fault-Recovering Actor GC

suffice to know in Figure 7.14 that 𝑎 has become exiled. We also need to know:
1. How many messages did 𝑎 send to 𝑏 before 𝑎 became exiled?
2. How many 𝑏-references did 𝑎 send before 𝑎 became exiled?

This information, which would typically be available in 𝑎’s snapshot, is inaccessible because 𝑎
has been removed from the configuration.

Figure 7.15 shows a more complex example of actor garbage in the Exile model:
1. 𝑎 sends 𝑐 a reference to 𝑏;
2. 𝑐 receives the reference and becomes busy;
3. 𝑐 sends 𝑏 two messages𝑚2,𝑚3 and sends 𝑑 two messages, containing references to 𝑎 and

𝑏;
4. 𝑐 becomes exiled—but only 𝑚2 and the reference 𝑏 were admitted. Message 𝑚3 and the

reference 𝑎 will never be delivered because 𝑐’s node has been shunned by the nodes of 𝑏
and 𝑑 .

Our key insight is to observe that, in Figure 7.15, the number of messages that 𝑐 sent before
becoming exiled does not matter. The only messages that can be delivered to 𝑏 and 𝑑 are the
admitted messages from 𝑐—messages that have already been delivered to their destination nodes.
Our approach in the next section is therefore to instrument actor systems to track admitted mes-
sages, thereby compensating for the lack of snapshots from exiled nodes.

7.5.2 Detecting Quiescence

Our approach is to introduce mechanisms for the garbage collector to detect faults and then
reduce faulty cases into non-faulty cases. For example, once an actor has been notified that a
message was dropped, the actor’s state will appear “as if” the message were delivered. Similarly,
once the garbage collector has been notified that a group of nodes were exiled, it will collect
garbage “as if” the exiled actors halted and never sent any messages after they were shunned.

Dropped Messages and Ingress Actors Our fault-detection mechanism is realized by a bag
of dropped messages and a family of ingress actors.

In the Exile model, droppedmessages are not simply removed from the configuration; they are
moved to a new bag of droppedmessages. We assume the implementation has somemechanism for
eventually identifying all dropped messages. Actors are then eventually notified about dropped
messages by incrementing their received count and incrementing their deactivated(𝑏) count for
each reference 𝑏 the message contained. However, the actor never receives the payload of the
message and never becomes busy as a result of the message. This mechanism is modeled by a
new event in Exile:

92

CHAPTER 7. Fault-Recovering Actor GC

1. DetectDropped(𝑎,𝑚): Idle actor 𝑎 is notified that 𝑚 was dropped, causing 𝑎’s state to be
updated but for 𝑎 to remain idle.

Each pair of distinct nodes 𝑁1, 𝑁2 has a system-level ingress actor 𝐼𝑁1,𝑁2 , located on 𝑁2, respon-
sible for admitting messages from 𝑁1. Ingress actors record the following information:

• 𝐼𝑁,𝑁 ′ .shunned: An indication of whether 𝑁 has been shunned by 𝑁 ′. Once this field is set,
messages from 𝑁 can no longer be admitted to 𝑁 ′.

• 𝐼𝑁,𝑁 ′ .admittedMsgs(𝑎): The number of messages sent to 𝑎, originating from 𝑁 , that have
been admitted.

• 𝐼𝑁,𝑁 ′ .admittedRefs(𝑎, 𝑏): The number of references owned by 𝑎 and pointing to 𝑏, originat-
ing from 𝑁 , that have been admitted.

After a message from 𝑁 to 𝑁 ′ is detected to have dropped, 𝐼𝑁,𝑁 ′ admits the message and then
notifies the target actor.

Ingress actors, like ordinary actors, take uncoordinated snapshots that can be used by the
garbage collector.

We say node 𝑁 appears exiled if there exist nontrivial groups of actors G1,G2 such
that (1) 𝑁 ∈ G1, (2) all nodes are either in G1 or G2, and (3) 𝐼𝑁1,𝑁2 .shunned for each
𝑁1 ∈ G1, 𝑁2 ∈ G2.

We say 𝑎 appears exiled if 𝑎 is located on a node that appears exiled. If 𝑎 appears
exiled or appears halted, we say 𝑎 appears to have failed.

We say 𝑎 has an effective snapshot if 𝑎 has a snapshot in 𝑆 or 𝑎 appears exiled.

Message𝑚 was effectively received if target actor 𝑎 received𝑚 or detected that𝑚 was
dropped.

For convenience, we will often treat nodes 𝑁 as sets of actors, so that 𝑎 ∈ 𝑁 if
𝑎 is located on 𝑁 . We also write 𝑆 (𝑁) to denote the actors on 𝑁 that have taken
snapshots, i.e. dom(𝑆) ∩ 𝑁 .

As remarked at the start of Section 7.5.1, the actor GC of the Monitors model is sound in
the face of failures. Our approach is therefore to treat each actor 𝑎 as non-exiled until enough
ingress actors have taken snapshots that𝑎 appears exiled. Subsequently, we use ingress snapshots
in place of 𝑎’s snapshot to collect any garbage produced when 𝑎 failed.

Apparent Quiescence We now define what it means for a message to appear sent or received
(or for a reference to appear created or deactivated) using snapshots from ingress actors. In the
following definitions, G1 is the set of nodes that do not appear exiled, and G2 is the set of nodes
that do appear exiled.

93

CHAPTER 7. Fault-Recovering Actor GC

The apparent send count for 𝑏, located on node 𝑁 , is

sent(𝑏) =
∑︁
𝑁1∈G1

∑︁
𝑎∈𝑆 (𝑁1)

𝑆 (𝑎).sent(𝑏) +
∑︁
𝑁2∈G2

𝑆 (𝐼𝑁2,𝑁).admittedMsgs(𝑎). (7.11)

The apparent created count for 𝑏, located on node 𝑁 , pointing to 𝑐 is

created(𝑏, 𝑐) =
∑︁
𝑁1∈G1

∑︁
𝑎∈𝑆 (𝑁1)

𝑆 (𝑎).created(𝑏, 𝑐) +
∑︁
𝑁2∈G2

𝑆 (𝐼𝑁2,𝑁).admittedRefs(𝑏, 𝑐).

(7.12)

The apparent receive count for 𝑏 is

received(𝑏) =

𝑆 (𝑏).received if 𝑏 ∈ dom(𝑆)

0 otherwise.
(7.13)

The apparent deactivated count for 𝑏 to 𝑐 is

deactivated(𝑏, 𝑐) =

𝑆 (𝑏).deactivated(𝑐) if 𝑏 ∈ dom(𝑆)

0 otherwise.
(7.14)

Actor 𝑎 appears blocked if it appears idle and its apparent send count is equal to its
apparent receive count.

Actor 𝑎 appears hereto acquainted with 𝑏 if the apparent created count for 𝑎 pointing
to 𝑏 is greater than zero.

Actor 𝑎 appears acquainted with 𝑏 if the apparent created count for 𝑎 pointing to 𝑏 is
greater than the apparent deactivated count.

Collage 𝑆 appears hereto-closed if, for each𝑏 ∈ dom(𝑆), if 𝑎 appears hereto acquainted
with 𝑏 then either 𝑎 ∈ dom(𝑆) or 𝑎 appears exiled.

An actor appears to have failed if it appears halted or appears exiled.

Notice how snapshots from apparently exiled actors are replaced in sent(𝑏) and created(𝑏, 𝑐)
by ingress snapshots. Using these definitions, we define “apparent” analogs of strongly and
weakly quiescent garbage (Definitions 6.6 and 6.9):

Definition 7.7. Actor 𝑏 appears strongly quiescent in collage 𝑆 if 𝑎 appears to have failed or all
of the following hold:

94

CHAPTER 7. Fault-Recovering Actor GC

1. 𝑏 is appears hereto-closed in 𝑆 ;
2. 𝑏 appears blocked;
3. 𝑏 does not appear sticky;
4. If some 𝑎 appears acquainted with 𝑏, then 𝑎 appears strongly quiescent; and
5. If some 𝑎 appears monitored by 𝑏, then 𝑎 does not appear to have failed, appears strongly

quiescent, and is not located on a distinct node from 𝑏.

Definition 7.8. Actor 𝑏 appears weakly quiescent in collage 𝑆 if 𝑎 appears to have failed or all of
the following hold:

1. 𝑏 is appears hereto-closed in 𝑆 ;
2. 𝑏 appears blocked;
3. 𝑏 does not appear sticky;
4. If some 𝑎 appears acquainted with 𝑏, then 𝑎 appears weakly quiescent; and
5. If some 𝑎 appears monitored by 𝑏, then 𝑎 does not appear to have failed and appears weakly

quiescent.

As before, we prove soundness via the invariant (Dynamic-Inv). However, Lemmas 7.2 to 7.4
must be modified to account for effective send and receive information.

𝑆 is hereto-closed for 𝑎 ∈ dom(𝑆) if every hereto inverse acquaintance of 𝑎 has an
effective snapshot, i.e. 𝑎 is either in dom(𝑆) or appears exiled.

Lemma 7.5. If (Dynamic-Inv) holds up to 𝑡 then 𝑆 is hereto-closed for 𝑄 up to 𝑡 .

Proof. Let 𝑐 ∈ 𝑄 . By induction on time 𝑡 , we show that every actor 𝑏 with a reference to 𝑐 at time
𝑡 must either (a) have a snapshot in 𝑆 , or (b) appear exiled in 𝑆 .

At 𝑡 = 0, there is only one actor 𝑎 with a reference to itself. If 𝑎 ∈ 𝑄 then 𝑎 ∈ dom(𝑆) by
definition.

Assuming the property holds up to time 𝑡 , suppose actor 𝑏 obtains a reference to 𝑐 at time 𝑡 +1.
There are three possibilities.

1. 𝑏 spawned 𝑐 . Then 𝑐 was spawned with 𝑐.created(𝑏, 𝑐) > 0 in its state. This implies
𝑆 (𝑐).created(𝑏, 𝑐) > 0. Since 𝑄 appears quiescent, 𝑏 must either appear exiled or have
a snapshot in 𝑆 .

2. 𝑏 = 𝑐 and 𝑐 has just been spawned, thereby obtaining a reference to itself. Again, 𝑐 ∈ 𝑄

implies 𝑏 ∈ dom(𝑆).
3. 𝑏 received a reference to 𝑐 in a message, sent by some 𝑎. Let 𝑡𝑠 be the time when 𝑎 sent

the message. Actor 𝑎 must have been acquainted with 𝑐 when it sent the message, so
𝑎 ∈ dom(𝑆) or 𝑎 appears exiled by the induction hypothesis. Consider each case:

95

CHAPTER 7. Fault-Recovering Actor GC

(a) Case 1 (𝑎 ∈ dom(𝑆)): Notice that 𝑎.created(𝑏, 𝑐) > 0 at 𝑡𝑠 . By (Dynamic-Inv), 𝑎 could
not have taken a snapshot before sending the message. Hence 𝑆 (𝑎).created(𝑏, 𝑐) > 0.
Since 𝑄 appears quiescent, 𝑏 would need to either appear exiled or have a snapshot
in 𝑆 .

(b) Case 2 (𝑎 appears exiled): If 𝑏 also appears exiled, the property holds immediately.
So suppose 𝑏 does not appear exiled, implying that 𝑎 and 𝑏 are located on different
nodes; call these nodes 𝑁𝑎 and 𝑁𝑏 , respectively. For 𝑏 to receive the reference, the
message must have been admitted to 𝑁𝑏 . For 𝑎 to appear exiled, 𝑆 must have a snap-
shot from ingress actor 𝐼𝑁𝑎,𝑁𝑏

that was taken after 𝑁𝑏 shunned 𝑁𝑎 . Since the message
was admitted before 𝑁𝑏 shunned 𝑁𝑎 , it follows that 𝑆 (𝐼𝑁𝑎,𝑁𝑏

).admittedRefs(𝑏, 𝑐) > 0.
Since𝑄 appears quiescent and 𝑏 does not appear exiled, 𝑏 must have a snapshot in 𝑆 .

QED.

We generalize the notions of forward- and backward-crossing messages to account for appar-
ently exiled actors, which have no snapshot in 𝑆 , and dropped messages:

A message𝑚 from 𝑎 to 𝑏 is forward-crossing if 𝑏 did not effectively receive𝑚 before
taking a snapshot and one of the following holds:

1. 𝑎 ∈ dom(𝑆) and𝑚 was sent before 𝑎’s snapshot; or
2. 𝑎 appears exiled and𝑚 was admitted.

A message𝑚 from 𝑎 to 𝑏 is backward-crossing if 𝑎 ∈ dom(𝑆) and𝑚 was sent after 𝑎
took a snapshot and𝑚 was effectively received before 𝑏 took a snapshot.

Lemma 7.6. Let 𝑏 ∈ 𝑄 and let 𝑡 be the time that 𝑏 took a snapshot. If (Dynamic-Inv) holds up
to 𝑡 then there are no forward- or backward-crossing messages to 𝑏.

Proof. First we show there are no backward-crossing messages. Suppose an actor 𝑎 took a snap-
shot at 𝑡𝑎; then 𝑎 sent a message to 𝑏 at 𝑡𝑠 ; and then the message was received before 𝑡 . Since
𝑡𝑠 ∈ (𝑡𝑎, 𝑡) and 𝑎 had a reference to 𝑏 at 𝑡𝑠 , (Dynamic-Inv) implies 𝑎 ∈ 𝑄 . But then (Dynamic-Inv)
also implies 𝑎 was idle at 𝑡𝑠 , so the message could not have been sent in the first place.

In the remainder, we show there are no forward-crossing messages up to time 𝑡 . For each actor
𝑎 in the execution, let recv𝑎,𝑏 equal the number of messages 𝑏 effectively received from 𝑎 before
𝑡 . By Lemma 7.5, the only actors that could have sent 𝑏 such messages are in dom(𝑆) or appear
exiled in 𝑆 . Letting G1 be the set of nodes that do not appear exiled and G2 be the set of nodes
that do appear exiled, it follows that:∑︁

𝑁∈G1

∑︁
𝑎∈𝑆 (𝑁)

recv𝑎,𝑏 +
∑︁
𝑁∈G2

∑︁
𝑎∈𝑁

recv𝑎,𝑏 = 𝑆 (𝑏).received. (7.15)

96

CHAPTER 7. Fault-Recovering Actor GC

For each 𝑎 with an effective snapshot in 𝑆 , let crossing𝑎,𝑏 equal the number of forward-crossing
messages from 𝑎 to 𝑏. If 𝑎 ∈ dom(𝑆), then:

𝑆 (𝑎).sent(𝑏) = recv𝑎,𝑏 + crossing𝑎,𝑏 (7.16)

because we already proved there are no backward-crossing messages from 𝑎 to 𝑏. Likewise, for
each apparently exiled node 𝑁 :

𝑆 (𝐼𝑁,𝑁𝑏
).admittedMsgs(𝑏) =

∑︁
𝑎∈𝑁
(recv𝑎,𝑏 + crossing𝑎,𝑏), (7.17)

where 𝑁𝑏 is the location of 𝑏. Combining Equations (7.16) and (7.17), we find:∑︁
𝑁∈G1

∑︁
𝑎∈𝑆 (𝑁)

𝑆 (𝑎).sent(𝑏) +
∑︁
𝑁2∈G2

𝑆 (𝐼𝑁2,𝑁).admittedMsgs(𝑏) =∑︁
𝑁∈G1

∑︁
𝑎∈𝑆 (𝑁)

(recv𝑎,𝑏 + crossing𝑎,𝑏) +
∑︁
𝑁∈G2

∑︁
𝑎∈𝑁
(recv𝑎,𝑏 + crossing𝑎,𝑏).

(7.18)

Since 𝑏 appears blocked, we have∑︁
𝑁∈G1

∑︁
𝑎∈𝑆 (𝑁)

𝑆 (𝑎).sent(𝑏) +
∑︁
𝑁2∈G2

𝑆 (𝐼𝑁2,𝑁).admittedMsgs(𝑎) = 𝑆 (𝑏).received. (7.19)

From Equations (7.15), (7.18) and (7.19), it follows that crossing𝑎,𝑏 = 0 for every 𝑎. Hence 𝑏 has
no forward-crossing messages. QED.

Lemma 7.7. Let 𝑏 ∈ dom(𝑆) and let 𝑡 be the time that 𝑏 took a snapshot. If (Dynamic-Inv) holds
up to 𝑡 then, for all 𝑐 ∈ 𝑄 :

1. There are no forward- or backward-crossing 𝑐-references to 𝑏.
2. Actor 𝑏 appears acquainted with 𝑐 if and only if 𝑏 is acquainted with 𝑐 at time 𝑡 .

Proof. The fact that there are no backward-crossing references follows from the invariant: Sup-
pose actor 𝑎 takes a snapshot at 𝑡𝑎; then 𝑎 sends a 𝑐-reference to 𝑏 at 𝑡𝑠 ; and then the reference is
effectively received before 𝑡 . To send the reference, 𝑎 must have had a reference to 𝑐 at 𝑡𝑠 ∈ (𝑡𝑎, 𝑡).
By (Dynamic-Inv), 𝑐 ∈ 𝑄 implies 𝑎 ∈ 𝑄 . But then (Dynamic-Inv) also implies 𝑎 was idle at 𝑡𝑠 , so
the reference could not have been sent in the first place.

We now show that there are no forward-crossing 𝑐-references to 𝑏. Recall that 𝑏 can obtain a
reference to 𝑐 in three ways:

1. Some 𝑎 sent 𝑏 a reference to 𝑐;
2. 𝑏 spawned 𝑐; or

97

CHAPTER 7. Fault-Recovering Actor GC

3. 𝑏 = 𝑐 , so 𝑏 was spawned with a reference to itself.
For each actor 𝑎 in the execution, let activated𝑎,𝑏 equal the number of 𝑐-references that 𝑏 ef-

fectively received from 𝑎 before 𝑡 . Any 𝑐-reference that 𝑏 effectively received before 𝑡 must have
been sent by an actor 𝑎 that was acquainted with 𝑐 at some earlier time 𝑡 ′ < 𝑡𝑏 . By Lemma 7.5,
actor 𝑎 either has a snapshot in 𝑆 or appears exiled in 𝑆 . Letting G1 be the set of nodes that do
not appear exiled and G2 be the set of nodes that do appear exiled, it follows that:

self +
∑︁
𝑁∈G1

∑︁
𝑎∈𝑆 (𝑁)

activated𝑎,𝑏 +
∑︁
𝑁∈G2

∑︁
𝑎∈𝑁

activated𝑎,𝑏 ≥ 𝑆 (𝑏).deactivated(𝑐), (7.20)

where

self =


1 if 𝑏 = 𝑐 , or if 𝑏 spawned 𝑐 before 𝑡

0 otherwise
(7.21)

That is, 𝑏 could only have deactivated the 𝑐-references that it obtained from itself, actors in
dom(𝑆), or actors that appear exiled.

For each 𝑎 with an effective snapshot in 𝑆 , let crossing𝑎,𝑏 equal the number of forward-crossing
𝑐-references from 𝑎 to 𝑏. Hence, because we already proved there are no backward-crossing 𝑐-
references,

𝑆 (𝑎) .created(𝑏, 𝑐) =

activated𝑎,𝑏 + crossing𝑎,𝑏 if 𝑎 ≠ 𝑏

activated𝑏,𝑏 + crossing𝑏,𝑏 + self otherwise
(7.22)

Likewise, for each apparently exiled node 𝑁 ,

𝑆 (𝐼𝑁,𝑁𝑏
).admittedRefs(𝑏, 𝑐) =

∑︁
𝑎∈𝑁
(activated𝑎,𝑏 + crossing𝑎,𝑏). (7.23)

Combining Equations (7.22) and (7.23), we find:∑︁
𝑁∈G1

∑︁
𝑎∈𝑆 (𝑁)

𝑆 (𝑎).created(𝑏, 𝑐) +
∑︁
𝑁2∈G2

𝑆 (𝐼𝑁2,𝑁𝑏
).admittedRefs(𝑏, 𝑐) =

self +
∑︁
𝑁∈G1

∑︁
𝑎∈𝑆 (𝑁)

(activated𝑎,𝑏 + crossing𝑎,𝑏) +
∑︁
𝑁∈G2

∑︁
𝑎∈𝑁
(activated𝑎,𝑏 + crossing𝑎,𝑏).

(7.24)

There are two cases.
Case 1 (⇒). Assume 𝑏 appears acquainted with 𝑐 . Since 𝑐 ∈ 𝑄 and appears quiescent, 𝑏 ∈ 𝑄 .

Then Lemma 7.6 implies there are no forward-crossing messages to 𝑏. Hence, in particular there
can be no forward-crossing 𝑐-references to 𝑏.

98

CHAPTER 7. Fault-Recovering Actor GC

Next we show that 𝑏 is acquainted with 𝑐 at time 𝑡 . Lemma 7.6 implies crossing𝑎,𝑏 = 0 for all 𝑎,
so ∑︁

𝑁∈G1

∑︁
𝑎∈𝑆 (𝑁)

𝑆 (𝑎).created(𝑏, 𝑐) +
∑︁
𝑁2∈G2

𝑆 (𝐼𝑁2,𝑁𝑏
).admittedRefs(𝑏, 𝑐) =

self +
∑︁
𝑁∈G1

∑︁
𝑎∈𝑆 (𝑁)

activated𝑎,𝑏 +
∑︁
𝑁∈G2

∑︁
𝑎∈𝑁

activated𝑎,𝑏 .
(7.25)

Also, since 𝑏 appears acquainted with 𝑐 ,∑︁
𝑁∈G1

∑︁
𝑎∈𝑆 (𝑁)

𝑆 (𝑎).created(𝑏, 𝑐) +
∑︁
𝑁2∈G2

𝑆 (𝐼𝑁2,𝑁𝑏
).admittedRefs(𝑏, 𝑐) > 𝑆 (𝑏).deactivated. (7.26)

Hence
self +

∑︁
𝑁∈G1

∑︁
𝑎∈𝑆 (𝑁)

activated𝑎,𝑏 +
∑︁
𝑁∈G2

∑︁
𝑎∈𝑁

activated𝑎,𝑏 > 𝑆 (𝑏).deactivated, (7.27)

i.e. 𝑏 has at least one reference to 𝑐 at time 𝑡 that has not been deactivated.
Case 2 (⇐). Assume 𝑏 does not appear acquainted with 𝑐 . Applying Equation (7.24), this

implies:

𝑆 (𝑏).deactivated(𝑐) ≥ (7.28)

self +
∑︁
𝑁∈G1

∑︁
𝑎∈𝑆 (𝑁)

(activated𝑎,𝑏 + crossing𝑎,𝑏) +
∑︁
𝑁∈G2

∑︁
𝑎∈𝑁
(activated𝑎,𝑏 + crossing𝑎,𝑏) ≥ (7.29)

self +
∑︁
𝑁∈G1

∑︁
𝑎∈𝑆 (𝑁)

activated𝑎,𝑏 +
∑︁
𝑁∈G2

∑︁
𝑎∈𝑁

activated𝑎,𝑏 . (7.30)

Combining the above inequality with Equation (7.20), we deduce that crossing𝑎,𝑏 = 0 for all 𝑎,
i.e. there are no forward-crossing 𝑐-references. Moreover, every reference 𝑏 obtained for 𝑐 has
been deactivated—so 𝑏 is not acquainted with 𝑐 at time 𝑡 . QED.

Theorem 7.5 (Strong Soundness). Let 𝑆 be a collage and let𝑄 be a subset of dom(𝑆) that appears
hereto-closed and appears strongly quiescent. Then 𝑄 is strongly quiescent.

Proof. The result follows from the invariant (Dynamic-Inv). We prove the invariant holds at all
times by contradiction. Suppose 𝑡 is the first time the invariant is violated. We consider the two
ways the invariant could be violated at time 𝑡 .

Case 1. An actor 𝑏 ∈ 𝑄 is busy and has taken a snapshot. Because 𝑏 was idle when it took the
snapshot, it must have become busy at time 𝑡 . Recall that actors can become busy in four ways:

1. 𝑏 received a message. By Lemma 7.5, there are two possibilities.
(a) The message was sent at time 𝑡𝑠 < 𝑡 by an actor 𝑎 ∈ dom(𝑆). If 𝑎 sent the message

99

CHAPTER 7. Fault-Recovering Actor GC

before taking a snapshot, then the message is forward-crossing and therefore forbid-
den by Lemma 7.6. Otherwise, since (Dynamic-Inv) still held at time 𝑡𝑠 < 𝑡 , actor 𝑎
must be in 𝑄 and must have been idle at 𝑡𝑠—making it impossible for 𝑎 to have sent
the message.

(b) The message was sent by an actor that appears exiled. Such a message is forward-
crossing and therefore forbidden by Lemma 7.6.

2. 𝑏 is sticky and received a wakeup signal. This is impossible because 𝑏 was not sticky at the
time of its snapshot, so𝑏 would have had to become busy at an earlier time 𝑡 ′ < 𝑡 to become
sticky.

3. 𝑏 monitors an actor 𝑐 and is notified that 𝑐 halted. This is only possible if 𝑐 was busy at
some 𝑡 ′ < 𝑡 and then 𝑐 halted. Notice that 𝑏 must have been monitoring 𝑐 at the time
of 𝑏’s snapshot so, because 𝑏 appears quiescent, 𝑐 ∈ 𝑄 . Because 𝑐 ∈ 𝑄 and 𝑏 is the first
actor in𝑄 to become busy, 𝑐 cannot have halted after taking a snapshot. Therefore 𝑐 halted
before taking a snapshot—but then 𝑐 appears halted, contradicting the fact that 𝑏 appears
quiescent.

4. 𝑏 monitors a remote actor 𝑐 and is notified that 𝑐 became exiled. This is impossible because
𝑏 did not monitor any remote actors at the time of its snapshot.

Case 2. An actor 𝑏 ∈ dom(𝑆) \𝑄 has taken a snapshot and holds a reference to some 𝑐 ∈ 𝑄 . By
Lemma 7.7, 𝑏 could not have been acquainted with 𝑐 at the time of 𝑏’s snapshot, because then 𝑏

would appear acquainted with 𝑐 , implying 𝑏 ∈ 𝑄 . Hence 𝑏 received the reference to 𝑐 at time 𝑡 ,
sent by some actor 𝑎 at time 𝑡𝑠 < 𝑡 . By Lemma 7.5, 𝑎 ∈ dom(𝑆) or 𝑎 appears exiled. By Lemma 7.7,
the reference cannot be forward-crossing; this implies 𝑎 cannot appear exiled because 𝑏 did not
receive the message before taking a snapshot. So 𝑎 ∈ dom(𝑆).

Since 𝑎 has a snapshot in 𝑆 and the reference is not forward-crossing, 𝑎 must have sent the
message after its snapshot. This implies 𝑎 ∈ 𝑄 and that 𝑎 was idle at 𝑡𝑠 , by the invariant and the
fact that 𝑎 had a reference to 𝑐 at 𝑡𝑠 . Hence 𝑎 could not have sent 𝑏 the reference.
Thus (Dynamic-Inv) holds for all times 𝑡 and all actors in𝑄 remain idle after taking snapshots.

This implies that, at time 𝑡 𝑓 when all actors in 𝑄 have taken snapshots, the actors of 𝑄 are all
garbage.

QED.

Theorem 7.6 (Weak Soundness). Let 𝑆 be a collage and let 𝑄 be an apparently hereto-closed
subset of dom(𝑆) that appears weakly quiescent If, for each 𝑎 ∈ 𝑄 , the actors monitored by 𝑎 do
not become exiled after 𝑎 takes a snapshot, then 𝑄 is weakly quiescent.

Proof. Identical to the preceding proof, except for the case when a remote actor becomes exiled.
This case is impossible by the assumption that monitored actors do not become exiled. QED.

100

CHAPTER 7. Fault-Recovering Actor GC

idle

busy

halted

reference

message

monitor

sticky

a

b c

d e

a

b c

d e

actor

dependency

pseudo-root

real world shadow world

gc

Figure 7.16: Actors (left) send snapshots to the garbage collector, which uses the snapshots to
construct a shadow graph (right).

7.6 Shadow Graphs and Undo Logs

So far in the chapter, collages have been encoded as collections of snapshots. However, this
encoding is not space efficient: since every actor records the number of messages sent to every
other actor, the message counts collectively use𝑂 (𝑛2) space. Similarly, reference creation counts
use𝑂 (𝑛3) space. This section presents shadow graphs, a more efficient way to represent collages
(Figure 7.16). For now, let us ignore the failure scenarios handled in Section 7.5.1; failures will be
handled with undo logs, presented in Section 7.6.2.

7.6.1 Shadow Graphs

A shadow graph is a collection of shadows—one for each actor occurring in the collage 𝑆 .
Formally:

Definition 7.9. Actor 𝑏 occurs in collage 𝑆 if any of the following hold:
1. 𝑏 ∈ dom(𝑆), or
2. There exists 𝑎 ∈ dom(𝑆) such that:

(a) ∃𝑐, 𝑆 (𝑎).created(𝑏, 𝑐) > 0;
(b) ∃𝑐, 𝑆 (𝑎).created(𝑐, 𝑏) > 0;
(c) 𝑆 (𝑎).sent(𝑏) > 0;
(d) 𝑆 (𝑎).deactivated(𝑏) > 0; or
(e) 𝑏 ∈ 𝑆 (𝑎).monitored

101

CHAPTER 7. Fault-Recovering Actor GC

Definition 7.10. Let 𝑏 be any actor, not necessarily in the domain of 𝑆 . We define the apparent
message counts according to the ordinary actors of 𝑆 as follows:

sent𝑆 (𝑏) =
∑︁

𝑎∈dom(𝑆)
𝑆 (𝑎).sent(𝑏) (7.31)

created𝑆 (𝑏, 𝑐) =
∑︁

𝑎∈dom(𝑆)
𝑆 (𝑎).created(𝑏, 𝑐) (7.32)

In contrast to the apparent message counts of Section 7.5.1, these counts do not use snapshots
from ingress actors. They are therefore identical to the message counts in the Monitors model.

Definition 7.11. Let 𝑏 be an actor and 𝑆 a collage. Then the shadow of 𝑏 is a 6-tuple 𝑠 with the
following components:

𝑠 .interned =


True if 𝑏 ∈ dom(𝑆)

False otherwise
(7.33)

𝑠 .status =


𝑆 (𝑏).status if 𝑏 ∈ dom(𝑆)

Undefined otherwise
(7.34)

𝑠 .isSticky =


𝑆 (𝑏).isSticky if 𝑏 ∈ dom(𝑆)

Undefined otherwise
(7.35)

𝑠 .watchers = {𝑎 : 𝑏 ∈ 𝑆 (𝑎).monitored} (7.36)

𝑠 .undelivered = sent𝑆 (𝑏) − received(𝑏) (7.37)

𝑠 .references(𝑐) = created𝑆 (𝑏, 𝑐) − deactivated(𝑏, 𝑐) (7.38)

Definition 7.12. Let 𝑆 be a collage. The shadow graph of 𝑆 is a finite map 𝐺 , associating the
actors occurring in 𝑆 with their shadows.

Notice that shadow graphs have less information than collages. In a collage, the snapshot
for actor 𝑎 includes the number of messages 𝑎 sent to each hereto acquaintance 𝑏, as well as
the number of references 𝑎 created. In a shadow graph, message counts are collapsed into a
single field,𝐺 (𝑏).undelivered. Likewise, each reference created for 𝑏 is accounted for in the map
𝐺 (𝑏).references.

Shadow graphs also encode some information differently than collages. Whereas the domain
of a collage is the set of actors that have taken snapshots, the domain of a shadow graph is the

102

CHAPTER 7. Fault-Recovering Actor GC

set of actors that occur in the snapshots. We set the bit𝐺 (𝑏).interned to indicate whether 𝑏 has a
snapshot in 𝑆 . In addition, the field 𝐺 (𝑏).watchers is the inverse of 𝑆 (𝑏).monitored; it stores the
set of actors that monitor 𝑏, instead of the actors that are monitored by 𝑏.

Although shadow graphs have less information than collages, we now show that shadow
graphs retain enough information to identify garbage. Our terminology is inspired by tracing
garbage collectors, which proceed by identifying a “root set” and marking all the objects that are
“reachable” from that set.

Definition 7.13. Actor 𝑏 is a pseudo-root in shadow graph 𝐺 if any of the following hold:
1. 𝐺 (𝑏).interned is false;
2. 𝐺 (𝑏).isSticky is true;
3. 𝐺 (𝑏).status is “busy”;
4. 𝐺 (𝑏).undelivered ≠ 0; or
5. 𝑏 ∈ 𝐺 (𝑎).watchers for some 𝑎, where 𝐺 (𝑎).status is “halted”.

Definition 7.14. Actor 𝑏 is marked in shadow graph 𝐺 if it does not appear faulty and any of
the following hold:

1. 𝑏 is a pseudo-root; or
2. There exists a marked actor 𝑎 ∈ dom(𝐺) such that:

(a) 𝐺 (𝑎).references(𝑏) > 0; or
(b) 𝐺 (𝑎).watchers contains 𝑏.

If 𝑏 ∈ dom(𝐺) and 𝑏 is not marked, we say 𝑏 is unmarked.

In Figure 7.16, actors 𝑎 and 𝑐 are pseudo-roots; actors 𝑎, 𝑐 , 𝑑 , and 𝑒 are marked; and 𝑏 is
unmarked.

In the absence of faults, the unmarked actors in 𝐺 are the same actors that appear quiescent
in 𝑆 . The proof is a special case of Theorem 7.8, presented in the next section.

Theorem 7.7. Assume no actors appear exiled. Then actor 𝑏 appears quiescent in collage 𝑆 if
and only if 𝑏 is unmarked in its shadow graph 𝐺 .

7.6.2 Undo Logs

When a node 𝑁 is exiled, the snapshots from actors on 𝑁 should be replaced with snapshots
from ingress actors. Doing so is straightforward if we encode a collage as a collection of snap-
shots. But when we encode a collage as a shadow graph, it is unclear how to “roll back” the effects
of only those snapshots produced by 𝑁 . For this, we introduce the concept of an undo log.
An undo log indicates how the shadow graph should bemodifiedwhen a specific node is exiled.

Undo logs are constructed from a collage 𝑆 by combining actor snapshots with ingress snapshots.

103

CHAPTER 7. Fault-Recovering Actor GC

In this section, we show how undo logs are constructed and how they can be used to amend a
shadow graph when nodes are exiled. We conclude with a proof that the unmarked actors in the
amended shadow graph correspond to the quiescent actors in the Exile model.

Definition 7.15. Let 𝑏 be an actor and 𝑁 a node. We define the message counts according to 𝑁
as follows:

sent𝑆,𝑁 (𝑏) =
∑︁

𝑎∈𝑆 (𝑁)
𝑆 (𝑎) .sent(𝑏) (7.39)

created𝑆,𝑁 (𝑏, 𝑐) =
∑︁

𝑎∈𝑆 (𝑁)
𝑆 (𝑎).created(𝑏, 𝑐) (7.40)

Definition 7.16. Given a collage 𝑆 , we define the undo log 𝐿 for node 𝑁 to be a record with the
following fields:

𝐿.undeliverableMsgs(𝑏) = sent𝑆,𝑁 (𝑏) − 𝑆 (𝐼𝑁,𝑁𝑏
).admittedMsgs(𝑏) (7.41)

𝐿.undeliverableRefs(𝑏, 𝑐) = created𝑆,𝑁 (𝑏, 𝑐) − 𝑆 (𝐼𝑁,𝑁𝑏
).admittedRefs(𝑏, 𝑐), (7.42)

where 𝑁𝑏 denotes the location of𝑏. That is, 𝐿.undeliverableMsgs(𝑏) is the number of messages
that appear sent to 𝑏 by 𝑁 but not admitted; likewise, 𝐿.undeliverableRefs(𝑏, 𝑐) is the number of
𝑐-references that appear sent to 𝑏 by 𝑁 but not admitted.

Undo logs are the garbage collector’s view of the network - namely, the messages sent from
𝑁 to actor 𝑎 that have not yet been admitted to 𝑎’s node. Thus, whereas ingress snapshots grow
without bound as the system evolves, we expect the undo logs to be small as long as snapshots
from ordinary actors and ingress actors are “up to date”.

Remarkably, these small undo logs are all we need to recover garbage after nodes have been
exiled. Below we define the amended shadow graph, produced by merging the undo logs of
apparently exiled nodes into the shadow graph presented in Section 7.6.1.

Definition 7.17. Let𝐺 be a shadow graph, let 𝑁1, . . . , 𝑁𝑘 be the set of nodes that appear exiled,
and let 𝐿1, . . . , 𝐿𝑘 be the undo logs for those nodes. We define the amended shadow graph as a
shadow graph 𝐺̃ where, for each actor 𝑎:

1. 𝑎 ∈ dom(𝐺̃) if 𝑎 ∈ dom(𝐺) and either:
(a) 𝑎 does not appear exiled, or
(b) 𝑎 appears exiled and 𝐺 (𝑎).watchers contains actors that do not appear faulty;

2. 𝐺̃ (𝑎).status = halted if 𝑎 appears exiled and 𝐺 (𝑎).watchers contains actors that do not
appear faulty;

104

CHAPTER 7. Fault-Recovering Actor GC

3. 𝐺̃ (𝑎).undelivered = 𝐺 (𝑎).undelivered − 𝐿.undeliverableMsgs(𝑎);
4. 𝐺̃ (𝑎).references(𝑏) = 𝐺 (𝑎).references(𝑏) − 𝐿.undeliverableRefs(𝑎, 𝑏);
5. 𝐺̃ (𝑎).watchers is equal to 𝐺 (𝑎).watchers, excluding any actors that appear faulty; and
6. 𝐺̃ (𝑎) is the same as 𝐺 (𝑎) in all other cases.

The amended shadow graph removes shadows from exiled actors, except when those actors
are monitored by non-faulty actors. In addition, the amended graph repairs reference counts and
message counts to account for messages that will never be delivered.

We conclude this section with a proof that unmarked actors in 𝐺̃ correspond to the actors in 𝑆
that appear quiescent.

Lemma 7.8. For each 𝑏 ∈ dom(𝐺), 𝐺̃ (𝑏).undelivered = sent(𝑏) − received(𝑏).

Proof. By the definitions of shadow graphs, merging, and undo logs:

𝐺̃ (𝑏).undelivered = sent𝑆 (𝑏) − received(𝑏) (7.43)

−
∑︁
𝑁2∈G2

(
sent𝑆,𝑁 (𝑏) − 𝑆 (𝐼𝑁2,𝑁𝑏

).admittedMsgs(𝑏)
)

(7.44)

where G2 is the set of nodes that appear exiled. Notice that sent𝑆 (𝑏) accounts for all nodes:

sent𝑆 (𝑏) =
∑︁
𝑁1∈G1

sent𝑆,𝑁1 (𝑏) +
∑︁
𝑁2∈G2

sent𝑆,𝑁2 (𝑏). (7.45)

Hence,

𝐺̃ (𝑏) .undelivered =
∑︁
𝑁1∈G1

sent𝑆,𝑁1 (𝑏) − received(𝑏) (7.46)

+
∑︁
𝑁2∈G2

𝑆 (𝐼𝑁2,𝑁).admittedMsgs(𝑏). (7.47)

Hence 𝐺̃ (𝑏).undelivered is the difference between the apparent send count and the apparent
receive count. QED.

Lemma 7.9. For each 𝑏, 𝑐 ∈ dom(𝐺),

𝐺̃ (𝑏).references(𝑐) = created(𝑏, 𝑐) − deactivated(𝑏, 𝑐). (7.48)

105

CHAPTER 7. Fault-Recovering Actor GC

Proof. By the definitions of shadow graphs, merging, and undo logs:

𝐺̃ (𝑏) .references(𝑐) = created𝑆 (𝑏, 𝑐) − deactivated(𝑏, 𝑐)
−

∑︁
𝑁2∈G2

(
created𝑆,𝑁2 (𝑏, 𝑐) − 𝑆 (𝐼𝑁2,𝑁𝑏

).admittedRefs(𝑏, 𝑐)
)

(7.49)

where G2 is the set of nodes that appear exiled. Notice that created𝑆 (𝑎, 𝑏) accounts for all nodes:

created(𝑏, 𝑐) =
∑︁
𝑁1∈G1

created𝑆,𝑁1 (𝑎, 𝑏) +
∑︁
𝑁2∈G2

created𝑆,𝑁2 (𝑎, 𝑏) (7.50)

Hence,

𝐺̃ (𝑏) .references(𝑐) =
∑︁
𝑁1∈G1

created𝑆,𝑁1 (𝑎, 𝑏) − deactivated(𝑏, 𝑐) (7.51)

+
∑︁
𝑁2∈G2

𝑆 (𝐼𝑁2,𝑁𝑏
) .admittedRefs(𝑏, 𝑐). (7.52)

Hence 𝐺̃ (𝑏).references(𝑐) is the difference between the apparent created count and the apparent
deactivated count. QED.

Lemma 7.10. For each 𝑏 occurring in 𝑆 and 𝑐 ∈ dom(𝐺̃), if 𝑏 ∈ 𝐺̃ (𝑐) .watchers then 𝑏 ∈ dom(𝐺̃)
and 𝑏 appears to monitor 𝑐 in 𝑆 . Conversely, for each 𝑏, 𝑐 occurring in 𝑆 , if 𝑏 appears to monitor
𝑐 in 𝑆 and 𝑏 does not appear faulty, then 𝑏, 𝑐 ∈ dom(𝐺̃) and 𝑏 ∈ 𝐺̃ (𝑐).watchers.

Proof. By definition, 𝑏 ∈ 𝐺̃ (𝑐) .watchers implies 𝑏 does not appear faulty and 𝑐 ∈ 𝑆 (𝑏).monitored.
Hence 𝑏 appears to monitor 𝑐 . Also, since 𝑏 occurs in 𝑆 and does not appear faulty, 𝑏 ∈ dom(𝐺̃).
Conversely, if 𝑏 appears to monitor 𝑐 in 𝑆 then 𝑏 ∈ 𝐺 (𝑐).watchers. Since 𝑏 does not appear

faulty, 𝑏, 𝑐 ∈ dom(𝐺̃) and 𝑏 ∈ 𝐺̃ (𝑐).watchers. QED.

Lemma 7.11. Actor 𝑏 appears hereto-closed in 𝑆 if and only if every 𝑎 with a reference to 𝑏 in
𝐺̃ is interned.

Proof. We prove each direction by contrapositive.
If 𝑏 does not appear hereto-closed in 𝑆 , then there exists an 𝑎 where created(𝑎, 𝑏) > 0 and 𝑎 ∉

dom(𝑆). This implies deactivated(𝑎, 𝑏) = 0 and 𝑎, 𝑏 both occur in 𝑆 ; hence 𝐺̃ (𝑎).references(𝑏) > 0
by Lemma 7.9. In addition, 𝑎 ∉ dom(𝑆) implies 𝐺̃ (𝑎).interned is false. Hence there exists 𝑎 ∈
dom(𝐺̃) that is not interned and has a reference to 𝑏.

Conversely, if there exists 𝑎 that is not interned in the shadow graph and𝐺 (𝑎).references(𝑏) >
0, then 𝑎 ∉ dom(𝑆) and 𝑎 must appear acquainted with 𝑏 in 𝑆 . Hence 𝑎 is an apparent hereto
inverse acquaintance of 𝑏 and 𝑎 ∉ dom(𝑆). QED.

106

CHAPTER 7. Fault-Recovering Actor GC

Lemma 7.12. 𝐺̃ (𝑎).status is halted if and only if 𝑎 ∈ dom(𝐺̃) appears faulty.

Proof. If 𝐺̃ (𝑎) .status is halted then 𝑆 (𝑎).status is halted or 𝑎 appears exiled. Conversely, if 𝑎 ∈
dom(𝐺̃) and 𝑎 appears faulty then 𝐺̃ (𝑎).status is halted by definition. QED.

Theorem 7.8. Let 𝑆 be a collage, let 𝐺̃ be its amended shadow graph, and let 𝑏 be an interned
actor that does not appear exiled. Then 𝑏 is unmarked in 𝐺̃ if and only if 𝑏 appears weakly
quiescent in 𝑆 .

Proof. It suffices to prove the contrapositive, that 𝑏 is marked if and only if 𝑏 does not appear
weakly quiescent.
(⇒): By induction on the definition of marked actors. If 𝑏 is a pseudo-root, then one of the

following must hold:
1. 𝑏 ∉ dom(𝑆);
2. 𝑏 appears busy or sticky;
3. 𝐺̃ (𝑏).undelivered > 0, implying 𝑏 appears unblocked by Lemma 7.8; or
4. 𝑏 ∈ 𝐺̃ (𝑎).watchers for some 𝑎 that appears faulty, implying 𝑏 appears to monitor an ap-

parently faulty actor by Lemma 7.10.
In each of these cases, 𝑏 cannot appear weakly quiescent For the induction step, let 𝑎 be a

marked actor. By the induction hypothesis, 𝑎 does not appear weakly quiescent. There are two
cases:

1. 𝐺̃ (𝑎).references(𝑏) > 0. By Lemma 7.9, 𝑎 appears acquainted with 𝑏.
2. 𝑏 ∈ 𝐺̃ (𝑎).watchers. By Lemma 7.10, 𝑏 appears to monitor an actor that does not appear

weakly quiescent.
In both cases, 𝑏 cannot appear weakly quiescent.
(⇐): If𝑏 does not appear weakly quiescent, then𝑏 appears non-faulty and one of the following

must hold:
1. 𝑏 does not appear hereto-closed;
2. 𝑏 appears unblocked or sticky;
3. There exists 𝑎 that does not appear weakly quiescent, and 𝑎 appears acquainted with 𝑏;
4. There exists 𝑎 that appears failed or does not appear weakly quiescent, and 𝑎 appears to be

monitored by 𝑏.
We proceed by induction on these cases.
Base case: If𝑏 does not appear hereto-closed, then Lemma 7.11 implies𝑏 is marked. If𝑏 appears

unblocked or sticky, then Lemma 7.9 implies 𝑏 is a pseudo-root.
Induction step: Let 𝑎 be an actor that does not appear weakly quiescent. Hence 𝑎 appears

non-faulty and, by the induction hypothesis, 𝑎 is marked. If 𝑎 appears acquainted with 𝑏, then

107

CHAPTER 7. Fault-Recovering Actor GC

𝐺̃ (𝑎).references(𝑏) > 0 by Lemma 7.9, so 𝑏 is marked. Otherwise, if 𝑎 appears monitored by 𝑏,
then 𝑏 ∈ 𝐺̃ (𝑎).watchers by Lemma 7.10, so 𝑏 is marked.

Now let 𝑎 be an actor that appears to have failed. If 𝑎 appears monitored by 𝑏, then 𝑏 ∈
𝐺̃ (𝑎).watchers by Lemma 7.10. Also, by Lemma 7.12, 𝐺̃ (𝑎).status is halted. Hence 𝑏 is a pseudo-
root. QED.

108

8

Implementation

The previous chapter showed that quiescent actors can be detected by creating a shadow
graph and tracing the graph to find actors that “appear” quiescent. This chapter presents CRGC
(Conflict-Replicated Garbage Collection):6 a high-performance fault-recovering actor GC for
Akka that combines the collage-based approach of Chapter 7with the theory of conflict-replicated
data types (CRDTs) [73]. CRGC is currently capable of detecting distributed actor garbage and
recovering from crashed node faults. Using the techniques in Chapter 7, it can also be extended
to recover from dropped message faults and to support Akka’s monitoring mechanism. The ar-
chitecture uses the shadow graph and undo log data structures from the previous chapter and
introduces two new concepts: diary entries and delta graphs.

8.1 Overview

The architecture of CRGC is depicted in Figures 8.1 to 8.3. Every node has a local garbage
collector (GC) with its own shadow graph. Actors send incremental updates, called diary entries

or simply entries, to be merged into their GC’s shadow graph. Each GC periodically wakes up,
traces its shadow graph, and kills any local actors that remain unmarked in the graph.

To detect distributed garbage, GCs also need entries from remote actors. However, broadcast-
ing entries from all actors to all GCs would be data-intensive. Instead, actors only send entries to
their local GCs, which combine batches of entries into efficient summaries called delta graphs.7

GCs broadcast their delta graphs to one another and merge incoming delta graphs into their
shadow graph, thereby obtaining eventually consistent views of the entire cluster.

For fault recovery, every node 𝑁 has an ingress actor for each adjacent node 𝑁 ′ in the cluster.
Ingress actors track incoming messages as in the previous chapter, and broadcast diary entries to
all the GCs. The GCs continually combine all incoming ingress entries and delta graphs to create

6Available at https://github.com/dplyukhin/uigc.
7Unlike the summaries in Section 5.3.2, delta graphs may contain snapshots from local actors that other nodes

do not need to know about. Developing a more compact representation of delta graphs is a subject for future work.

109

https://github.com/dplyukhin/uigc

CHAPTER 8. Implementation

gc gc

d

ba c

e
f k

Δ

Figure 8.1: Two nodes using CRGC. Each node has a local garbage collector, and each actor sends
entries to the garbage collector on its node. Garbage collectors exchange delta graphs.

a
c

e

gc gc

d

ba c

e
f g

a

c

e

b

d f

gg

x

xx
x

Figure 8.2: Two nodes using CRGC to collect garbage. Each GC has a shadow graph, representing
its view of the cluster. When a GC finds one of its local actors is garbage, it asks the actor to stop.

undo logs—one undo log for each other node in the cluster. Thus, if node 𝑁 ′ is exiled, then node
𝑁 can recover from the failure by merging its undo log for 𝑁 ′ into its shadow graph.

8.2 Diary Entries

In the previous chapter, each actor maintained a cumulative history of all the GC-related ac-
tions it performed. For example, if 𝑎 sent𝑏 a reference, then 𝑎’s state would record 𝑎.created(𝑏) >
0 for eternity. This is inefficient because it allows actor states to grow without bound (causing a
memory leak) and because each snapshot duplicates some of the information the actor sent in its
previous snapshot.

In CRGC, actors maintain small, fixed-size diary entries where they record only their most
recent GC-related actions. When an entry becomes full, the actor finalizes the entry by sending
it to the actor’s local garbage collector and allocating a fresh entry for future use. As long as
entries are never dropped and always received in FIFO order, the set of entries a garbage collector
received from actor 𝑎 up to time 𝑡 combines to form a snapshot of 𝑎 at 𝑡 .
Actors can also finalize entries before they are full. Doing so is necessary because the GC in

110

CHAPTER 8. Implementation

gc

b
c

e

?

?

shadow graph

delta graphs

b
c

e

?

?

c

e?

c

e

ingress entries

entry 1
entry 2

entry 3

actor entries

entry 1
entry 2

entry 3

undo logs

log 1
log 2

log 3

Figure 8.3: Dataflows in CRGC. Local actor entries are merged into the GC’s shadow graph and
used to produce delta graphs for other nodes. Delta graphs from remote nodes are merged into
the shadow graph to detect distributed garbage. Delta graphs are also combined with ingress
entries to produce undo logs.

Chapter 7 cannot detect that an actor𝑏 is quiescent unless the GC has a “recent enough” snapshot
from 𝑏. In addition, if some non-quiescent actor 𝑎 ever had a reference to 𝑏, the GCwill not detect
that 𝑏 is quiescent until the GC knows the reference is deactivated. Hence, both quiescent and
non-quiescent actors should always eventually finalize their entries.

Fortunately, our approach affords a great deal of flexibility in choosing policies for actors to
finalize entries. The policy used in the current implementation is borrowed from MAC [10]:
actors finalize entries whenever their mail queues become empty. Alternatively, we could choose
a policy where the garbage collector explicitly asks actors to finalize their entries, or some hybrid
of both policies.

8.2.1 Performance Optimizations

The design of CRGC and the flexibility of collage-based collection allow for interesting per-
formance optimizations. In existing actor GCs, memory allocation is a source of overhead. This
is particularly a problem for reference listing algorithms such as PRL (Part I) and the SALSA
GC [18], because resizing the reference list requires freeing and allocating memory. Dynamic
allocations take memory away from the application and create work for the object GC (e.g. the
G1 collector on the JVM). By giving entries a fixed size in CRGC, nodes can use an object pool
for entries and thereby eliminate the memory management cost of finalizing an entry.

In the current implementation of CRGC, there is only one garbage collector per node. This

111

CHAPTER 8. Implementation

idle

busy

node 1

halted

reference

message

monitor

root

node

a

b c

node 2

g

h i
sent(g): 3
sent(h): 5

created(g,b): 1

recv(g): 2
recv(h): 5

msg(b)

Figure 8.4: Ingress and egress actors in CRGC.

design has been adequate for our benchmarks, but it could lead to significant contention on the
garbage collector’s mail queue. Mailbox contention is a documented performance problem in
Pony’s cycle detector, MAC [74]. But CRGC, unlike MAC, does not require causal ordering and
therefore does not require a centralized mail queue. To reduce contention, we can allocate mul-
tiple mail queues for the garbage collector. When actors finalize entries, they can use consistent
hashing to select a mail queue. Thus the probability of two threads writing to the same queue is
reduced, while ensuring that actor entries are received in FIFO order.

8.3 Shadow Graphs and Delta Graphs

Shadow graphs, introduced in Section 7.6, are an efficient representation of collages. Each node
in the shadow graph, called a shadow, represents an actor in the collage. Shadows include fields to
indicate whether they are pseudo-roots, and there is also a (weighted) edge from actor 𝑎’s shadow
to actor 𝑏’s shadow if 𝑎 appears acquainted with 𝑏. Garbage collectors can find quiescent actors
by identifying pseudo-roots and tracing all the shadows reachable from those pseudo-roots; as
in tracing garbage collectors [28], any unmarked actors in resulting graph are guaranteed to be
garbage. However, in contrast to other concurrent garbage collectors, tracing the shadow graph
can be done without read or write barriers because the shadow graph is only modified by the
garbage collector itself.

Delta graphs are simply shadow graphs that can be serialized and sent to remote nodes. Delta
graphs consume lessmemory than entries for the reasons listed in Section 7.6. Similarly to entries,
delta graphs can bemerged into shadow graphs: merging a delta graph Δ into a shadow graph𝐺
has the same effect as merging all the entries used to construct Δ directly into 𝐺 .

112

CHAPTER 8. Implementation

8.4 Ingress and Egress Actors

Chapter 7 introduced the concept of an ingress actor that tracks the number of messages and
references that have been admitted to a node. We also assumed that nodes had some mechanism
for detecting dropped messages and references. In CRGC, this information is obtained by insert-
ing ingress actors and egress actors (Figure 8.4) between every pair of nodes in the cluster. Ingress
actors count incoming messages and references, as in Section 7.5.1; egress actors count outgoing
messages and references, so that the two actors can cooperate to detect dropped messages.

When node 𝑁1 sends a message to node 𝑁2, the egress actor 𝐸𝑁1,𝑁2 at 𝑁1 does the following:
1. Check the message recipient 𝑎 and the set of references 𝑅 in the message; and
2. Increment 𝐸𝑁1,𝑁2 .sentMsgs(𝑎) and increment 𝐸𝑁1,𝑁2 .sentRefs(𝑎, 𝑏) for each 𝑏 ∈ 𝑅.
Likewise, when 𝑁2 receives a message from 𝑁1, the ingress actor 𝐼𝑁1,𝑁2 does the following:
1. Check the message recipient 𝑎 and the set of references 𝑅 in the message; and
2. Increment 𝐼𝑁1,𝑁2 .admittedMsgs(𝑎) and increment 𝐼𝑁1,𝑁2 .admittedRefs(𝑎, 𝑏) for each 𝑏 ∈ 𝑅.
Thus at all times, the difference between 𝐸𝑁1,𝑁2 .sentMsgs(𝑎) and 𝐼𝑁1,𝑁2 .admittedMsgs(𝑎) is

equal to the number of in-flightmessages from𝑁1 to𝑁2 addressed to𝑎. By using a communication
protocol that guarantees messages are not delivered out-of-order, the egress actor and ingress
actor can cooperate to determine how many messages and references were dropped [14].

113

9

Evaluation

In this section, we measure the overhead of CRGC on single machines using an established set
of benchmarks—the Savina benchmark suite [59]—and evaluate the distributed performance of
CRGC using a new configurable benchmark, designed to illustrate a variety of realistic workloads.

9.1 Savina Benchmarks

Savina is a well-established benchmark suite for actor frameworks [59]. The suite contains
implementations of microbenchmarks, concurrency benchmarks, and parallelism benchmarks
using a number of actor frameworks, including Akka.

Because few actor frameworks implement actor GC, all of the implemented benchmarks use
manual actor garbage collection—and many do not produce any actor garbage at all. The purpose
of the benchmarks is to measure the performance of various actor features, such as messaging
throughput and rate of actor creation. By porting benchmarks from the Savina suite to use CRGC,
we measure the worst-case performance overhead of using automatic garbage collection in ap-
plications where automatic garbage collection may not be necessary. The results in this section
show that automatic garbage collection can have a non-negligible impact on certain microbench-
marks, but in practical benchmarks this performance impact vanishes.

In the original benchmarks, execution time included the time for all actors in the system to
terminate themselves. As remarked by Blessing et al [60], this does not accurately reflect real
actor systems and unfairly penalizes garbage collectors for running less often than necessary.
This chapter therefore uses a slightly modified version of the Savina suite, in which termination
time is excluded from measurements.

9.1.1 Microbenchmarks

Figures 9.1 and 9.2 show the impact of actor GC on two microbenchmarks, Count and Fi-
bonacci. The Count microbenchmark measures the time to send 𝑁 messages from a producer

114

CHAPTER 9. Evaluation

1.0 1.5 2.0 2.5 3.0 3.5 4.0
N 1e6

100

200

300

400

500

Ex
ec

ut
io

n
tim

e
(m

s)

no GC
CRGC
WRC

(a) Count

22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0
N

50

100

150

200

250

Ex
ec

ut
io

n
tim

e
(m

s)

no GC
CRGC
WRC

(b) Fibonacci

Figure 9.1: Execution times for Savina microbenchmarks.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
N 1e6

0

10

20

30

40

Ex
ec

ut
io

n
tim

e
ov

er
he

ad
 (%

)

no GC
CRGC
WRC

(a) Count

22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0
N

0

50

100

150

200

250
Ex

ec
ut

io
n

tim
e

ov
er

he
ad

 (%
)

no GC
CRGC
WRC

(b) Fibonacci

Figure 9.2: Execution time overheads for Savina microbenchmarks.

actor to a consumer actor. The Fibonacci benchmark computes the 𝑁 -th Fibonacci number us-
ing a recursive actor tree computation: when an actor is asked to compute the 𝑁 -th Fibonacci
number, it spawns actors to compute the 𝑁 − 1 and 𝑁 − 2 Fibonacci numbers and returns the
sum of the results. The Fibonacci benchmark therefore measures the rate of actor creation and
deletion when actor GC is trivial.

As a baseline, we evaluated the benchmarks without garbage collection (“no GC”) and with
weighted reference counting (WRC) [32], a lightweight acyclic garbage collection scheme. Fig-
ures 9.2a and 9.2b report the overhead in execution time for WRC and CRGC, compared to the
version without GC.

Results for the Count microbenchmark show that both CRGC and WRC have a nontrivial
impact on the rate messages are sent and received. For WRC, we attribute this to the fact that
actors need to check whether incoming messages contain any references. For CRGC, there are

115

CHAPTER 9. Evaluation

a multitude of small costs. Sending a message usually only requires incrementing a counter
associated with each reference, and receiving a message usually only requires incrementing an
actor’s receive count. However, when an actor’s entry becomes full (i.e. the send or receive
count is about to overflow) the actor finalizes its entry by sending it to the garbage collector and
initializing a fresh entry. Actors also finalize their entries when their message queue becomes
empty (similarly to Pony [10]) which happens frequently in Akka. Figure 9.1 shows that actor
GC imposes overhead, but sending and receiving messages remains quite cheap.

Results for the Fibonacci microbenchmark show that CRGC has a significant impact on the
rate of actor creation, but the overhead is still within an order of magnitude of non-GC code. This
overhead becomes vanishingly small in the Quicksort benchmark described in Section 9.1.2,
which uses an identical tree-like parallelism structure but gives each actor nontrivial amounts of
work to do. The overhead in Fibonacci is due to the large number of entry messages that must
be sent to and processed by the garbage collector.

9.1.2 Benchmarks

Figures 9.3 and 9.4 show the performance overhead of CRGC on real parallel algorithms in
the Savina suite. None of the benchmarks produce any actor garbage, so they measure the over-
head of message-passing and reference-passing. Because these operations have low overhead in
CRGC, the benchmarks all show similar performance between automatically garbage-collected
and manually garbage-collected code.

9.1.3 Message Counts

CRGC is closely related to Pony’s MAC algorithm [10], but it is difficult to make a fair empir-
ical comparison between the implementations: whereas CRGC is implemented as a library for
Akka on the JVM, MAC is tightly integrated with the Pony actor runtime, which is implemented
atop LLVM. We could write a MAC library for Akka and compare their execution times, but this
would be unfair because the implementation needs to be finely tuned for good performance. We
therefore compare the two approaches with respect to the number of extra messages imposed by
each algorithm.

Figures 9.5 and 9.6 plot the number of control messages imposed by WRC, MAC, and CRGC in
the Savina benchmark suite, relative to the number of application messages in each benchmark.
Our MAC implementation does not actually detect actor garbage, but performs the same CNF-
ACK protocol presented by Clebsch and Drossopoulou [10]. Unsurprisingly, MAC imposes more
control messages than CRGC: whereas in CRGC it suffices for actors to send entries to the garbage
collector, in MAC the garbage collector needs to send additional messages that confirm whether

116

CHAPTER 9. Evaluation

100 150 200 250 300 350 400 450 500
N

100

200

300

400

500

Ex
ec

ut
io

n
tim

e
(m

s)

no GC
CRGC
WRC

(a) All-Pairs Shortest Paths

10 15 20 25 30 35 40 45 50
N

2000

4000

6000

8000

10000

12000

Ex
ec

ut
io

n
tim

e
(m

s)

no GC
CRGC
WRC

(b) A-Star

10 11 12 13 14 15
N

2000

4000

6000

8000

10000

12000

Ex
ec

ut
io

n
tim

e
(m

s)

no GC
CRGC
WRC

(c) N-Queens

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
N 1e6

50

100

150

200

Ex
ec

ut
io

n
tim

e
(m

s)
no GC
CRGC
WRC

(d) QuickSort

50000 55000 60000 65000 70000 75000 80000 85000 90000
N

100

200

300

400

500

Ex
ec

ut
io

n
tim

e
(m

s)

no GC
CRGC
WRC

(e) RadixSort

200 400 600 800 1000
N

50

100

150

200

Ex
ec

ut
io

n
tim

e
(m

s)

no GC
CRGC
WRC

(f) RecMatMul

Figure 9.3: Execution times for Savina benchmarks.

117

CHAPTER 9. Evaluation

100 150 200 250 300 350 400 450 500
N

15

10

5

0

5

10

15

20

25

Ex
ec

ut
io

n
tim

e
ov

er
he

ad
 (%

)

no GC
CRGC
WRC

(a) All-Pairs Shortest Paths

10 15 20 25 30 35 40 45 50
N

10

5

0

5

10

15

20

Ex
ec

ut
io

n
tim

e
ov

er
he

ad
 (%

)

no GC
CRGC
WRC

(b) A-Star

10 11 12 13 14 15
N

10

5

0

5

10

15

20

Ex
ec

ut
io

n
tim

e
ov

er
he

ad
 (%

)

no GC
CRGC
WRC

(c) N-Queens

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
N 1e6

30

20

10

0

10

Ex
ec

ut
io

n
tim

e
ov

er
he

ad
 (%

)

no GC
CRGC
WRC

(d) QuickSort

50000 55000 60000 65000 70000 75000 80000 85000 90000
N

0

50

100

150

200

Ex
ec

ut
io

n
tim

e
ov

er
he

ad
 (%

)

no GC
CRGC
WRC

(e) RadixSort

200 400 600 800 1000
N

10

0

10

20

30

Ex
ec

ut
io

n
tim

e
ov

er
he

ad
 (%

)

no GC
CRGC
WRC

(f) RecMatMul

Figure 9.4: Execution time overheads for Savina benchmarks.

118

CHAPTER 9. Evaluation

1.0 1.5 2.0 2.5 3.0 3.5 4.0
N 1e6

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
M

es
sa

ge
 o

ve
rh

ea
d

(%
)

MAC
CRGC
WRC

(a) Count

22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0
N

0

50

100

150

200

M
es

sa
ge

 o
ve

rh
ea

d
(%

)

MAC
CRGC
WRC

(b) Fibonacci

Figure 9.5: Message count overheads for Savina microbenchmarks.

the actor is truly blocked. However, both approaches use significantly more messages thanWRC,
which only adds control messages when actors send or deactivate references.

9.2 RandomWorkers: A Configurable GC Benchmark

Although the benchmarks in the previous section serve to measure overhead, they are not re-
alistic domains in which a programmer would use actor GC. All of the benchmarks are simple
enough to make manual actor GC trivial, and many of the benchmarks do not generate actor
garbage at all. Unfortunately, because actor GC is not widespread, there is no established cor-
pus of algorithms that generate actor garbage in an unpredictable way. We therefore follow the
methodology of Blessing et al. [60] and develop a configurable benchmark that can be tuned to
represent many different kinds of workloads.

Blessing et al. proposed ChatApp [60], a single-machine benchmark that simulates a highly
concurrent chat application. The benchmark consists of directory actors, which act as load bal-
ancers; client actors, which represent a remote client’s current state; and chat actors, which rep-
resent the current state of a conversation between actors. By tuning parameters, such as the
number of clients per directory or the likelihood of two actors starting a chat, the benchmark
can illustrate multiple different realistic workloads. However, the benchmark makes it easy to
predict when actors become garbage in order to accommodate actor frameworks that do not pro-
vide actor GC. This prevents the benchmark from expressing more sophisticated concurrency
patterns, such as tree-based parallelism in theQuicksort benchmark.

This section presents a generalization of the ChatApp benchmark, called RandomWorkers.
RandomWorkers consists of 𝑁 nodes with a Manager actor at each node. The central Manager

119

CHAPTER 9. Evaluation

100 150 200 250 300 350 400 450 500
N

0

25

50

75

100

125

150

175

M
es

sa
ge

 o
ve

rh
ea

d
(%

)

MAC
CRGC
WRC

(a) All-Pairs Shortest Paths

10 15 20 25 30 35 40 45 50
N

0

10

20

30

40

50

M
es

sa
ge

 o
ve

rh
ea

d
(%

)

MAC
CRGC
WRC

(b) A-Star

10 11 12 13 14 15
N

0

5

10

15

20

M
es

sa
ge

 o
ve

rh
ea

d
(%

)

MAC
CRGC
WRC

(c) N-Queens

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
N 1e6

0

50

100

150

200

M
es

sa
ge

 o
ve

rh
ea

d
(%

)

MAC
CRGC
WRC

(d) QuickSort

50000 55000 60000 65000 70000 75000 80000 85000 90000
N

0

5

10

15

20

25

M
es

sa
ge

 o
ve

rh
ea

d
(%

)

MAC
CRGC
WRC

(e) RadixSort

200 400 600 800 1000
N

0

20

40

60

80

100

120

140

M
es

sa
ge

 o
ve

rh
ea

d
(%

)

MAC
CRGC
WRC

(f) RecMatMul

Figure 9.6: Message count overheads for Savina benchmarks.

120

CHAPTER 9. Evaluation

Figure 9.7: Heap usage by RandomWorkers when actor GC is not used.

Figure 9.8: Heap usage by RandomWorkers with CRGC collection.

receives a continual stream of requests, at a configurable rate. Upon receiving a message, the
Manager can:

1. Spawn a local Worker actor;
2. Send a remote Manager some references to Workers;
3. Send a Worker some references to other Workers;
4. Send a “work” message (containing a payload of random, but configurable, size) to a Worker

actor;
5. Deactivate references to several Worker actors;
6. Deactivate references to all Worker actors.
The Worker actors, in turn, can also spawn new Workers and create references and deactivate

references.
Different configurations of the RandomWorkers benchmark can simulate different types of

applications:
1. The amount of work each Worker actor is given and the rate of requests to each Manger

actor can simulate load on a system.
2. If actors have zero probability of creating references, then all garbage is acyclic garbage.
3. If actors have zero probability of creating references between remote workers and local

workers, then there is no distributed garbage.
4. The likelihood for a Manager to deactivate references to all Worker actors affects the size

of cyclic garbge.

121

CHAPTER 9. Evaluation

Figures 9.7 and 9.8 show how RandomWorkers introduces memory leaks into a system if
actors are spawned without bound and never garbage-collected.

9.2.1 Bandwidth Usage

To collect distributed garbage, CRGC garbage collectors continually broadcast their ingress
entries and delta graphs. Figure 9.9 shows the bandwidth used by RandomWorkers for three
different configurations, broken down by source of overhead. The configurations are as follows:

• Torture test (small messages): Application messages contain a small payload between 0 and
50 bytes. Whenever a worker receives a message, the worker has a 30% chance of spawning
another worker or creating a reference for another worker. Likewise, managers have a 50%
chance of spawning a worker, a 50% chance of sending a message to a remote actor, and a
70% chance of sending a message to a local worker.

• Torture test (medium messages): A version of the torture test configuration where the mes-
sage payload may be between 0 and 5KB.

• Streaming: An application that exchanges large amounts of data with a relatively static ac-
tor topology. Messages contain a payload between 0 and 5KB. Worker actors do not spawn
or create references to one another. Whenever the manager actor receives a message, it
has a 50% chance of sending a message to a remote actor and a 70% chance of sending to a
local worker, but only a 1% chance of spawning a worker.

As expected, the bandwidth overhead for the torture test is very high (Figure 9.9a). However,
the majority of this overhead is taken up by actor references stored in delta graphs. Akka rep-
resents actor references as fully qualified paths, each taking up dozens of bytes to serialize. In
applications with many active actors per node, delta graphs will mention large numbers of actors
and each actor reference will need to be serialized. This problem could be solved by giving each
actor a compressed identifier for use in garbage collection, but the issue might not be pressing in
practice: Figures 9.9b and 9.9c show that when application messages are larger and the number
of actors is smaller, actor references (and CRGC as a whole) only impose a modest overhead.

122

CHAPTER 9. Evaluation

250 500 750 1000 1250 1500 1750 2000
Delta graph size (bytes)

0

1

2

3

4

5

6

7

8

Ba
nd

wi
dt

h
Co

ns
um

pt
io

n
(b

yt
es

)

1e8 Random Workers (300 reqs/sec)
Application data
CRGC (actor references)
CRGC (delta graphs)
CRGC (ingress entries)

(a) Torture test (small messages)

250 500 750 1000 1250 1500 1750 2000
Delta graph size (bytes)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ba
nd

wi
dt

h
Co

ns
um

pt
io

n
(b

yt
es

)

1e8 Random Workers (300 reqs/sec)
Application data
CRGC (actor references)
CRGC (delta graphs)
CRGC (ingress entries)

(b) Torture test (medium messages)

250 500 750 1000 1250 1500 1750 2000
Delta graph size (bytes)

0

1

2

3

4

5

6

7

Ba
nd

wi
dt

h
Co

ns
um

pt
io

n
(b

yt
es

)

1e9 Random Workers (300 reqs/sec)
Application data
CRGC (actor references)
CRGC (delta graphs)
CRGC (ingress entries)

(c) Streaming

Figure 9.9: Bandwidth usage for three configurations of RandomWorkers.

123

10

Conclusion

We have explored the collage-based approach to actor GC. Whereas traditional garbage col-
lectors compute a distributed snapshot that is a priori global and consistent, a collage-based ap-
proach takes an arbitrary collection of snapshots and identifies a consistent subset a posteriori.
The approach is remarkably general—it generalizes to models with dynamic topologies, moni-
toring for failure, message loss, and crashed nodes—and it is also flexible with respect to how it
is implemented.

This thesis presented two actor GCs based on the collage-based approach: PRL and CRGC.
The former allows acyclic garbage actors to collect themselves (using reference listing) and al-
lows local garbage collectors to exchange only minimal data (by summarizing their local set of
snapshots). In contrast, CRGC delegates all garbage collection to the node-local garbage collec-
tor and provides mechanisms for recovering from dropped messages and crashed nodes. One
opportunity for future work is to find the best of both worlds, e.g. a summarization algorithm for
CRGC like that of PRL, or an option to use reference listing when message delivery is guaranteed
to reduce the load on the garbage collector. Scaling CRGC to large clusters will likely require
more efficient protocols for exchanging garbage collection information. It would also be inter-
esting to develop an actor GC that combines the collage-based approach with a more traditional
snapshot-based approach, since the latter would be capable of collecting “disconnected” actor
garbage introduced in Section 2.2.

The most remarkable feature of the collage-based approach is how well it decouples perfor-
mance from correctness. Actors can take snapshots at any time, so we can tweak the frequency of
those snapshots according to the needs of the actor or the application. We are also free to give lo-
cal garbage collectors multiple message queues (reducing contention), to use gossip protocols for
exchanging snapshots between nodes, or to use generational garbage collection. Collage-based
GC allows researchers to experiment with optimizations without worrying about introducing
memory leaks or use-after-free bugs.

Most importantly, the work we developed here has shown that fully automatic distributed

124

CHAPTER 10. Conclusion

resource management could be more than just a pipe dream. After all, why would we expect
that an automatic garbage collector could be provably capable of recovery when information has
been irretrievably lost to the network or to a corrupted hard disk? The results are all due to the
simplicity of the actor model and the generality of the collage-based approach. If we can now
apply these results to real distributed applications, it could bring about serious improvements in
program reliability and simplicity.

125

REFERENCES

[1] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T. Graves,
J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia, B. Reed, and E. Balde-
schwieler, “Apache Hadoop YARN: Yet another resource negotiator,” in Proceedings of the

4th Annual Symposium on Cloud Computing. Santa Clara California: ACM, Oct. 2013, pp.
1–16.

[2] “Apache Hadoop Amazon Web Services support – S3A Committers: Architecture and
Implementation,” https://hadoop.apache.org/docs/r3.1.0/hadoop-aws/tools/hadoop-aws/
committer_architecture.html, 2018.

[3] G. Agha, “Concurrent object-oriented programming,” Communications of the ACM, vol. 33,
no. 9, pp. 125–141, Sep. 1990.

[4] “Riak,” https://riak.com/index.html, 2024.

[5] “Apache CouchDB,” https://couchdb.apache.org/, 2024.

[6] “Akka Streams Documentation • Akka Documentation,” https://doc.akka.io/docs/akka/2.9.
2/stream/index.html, 2024.

[7] “Alpakka Documentation,” https://doc.akka.io/docs/alpakka/7.0.2/index.html, 2024.

[8] “RabbitMQ,” https://www.rabbitmq.com/, 2024.

[9] “Akka HTTP,” https://doc.akka.io/docs/akka-http/10.6.1/index.html, 2024.

[10] S. Clebsch and S. Drossopoulou, “Fully concurrent garbage collection of actors on many-
core machines,” in Proceedings of the 2013 ACM SIGPLAN International Conference on Object

Oriented Programming Systems Languages & Applications - OOPSLA ’13. Indianapolis, In-
diana, USA: ACM Press, 2013, pp. 553–570.

[11] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Elibol, Z. Yang, W. Paul,
M. I. Jordan, and I. Stoica, “Ray: A distributed framework for emerging AI applications,”
in 13th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2018,

Carlsbad, CA, USA, October 8-10, 2018, A. C. Arpaci-Dusseau and G. Voelker, Eds. USENIX
Association, 2018, pp. 561–577.

[12] N. Venkatasubramanian, G. Agha, and C. Talcott, “Scalable distributed garbage collection
for systems of active objects,” in Memory Management, Y. Bekkers and J. Cohen, Eds.
Berlin/Heidelberg: Springer-Verlag, 1992, vol. 637, pp. 134–147.

126

https://hadoop.apache.org/docs/r3.1.0/hadoop-aws/tools/hadoop-aws/committer_architecture.html
https://hadoop.apache.org/docs/r3.1.0/hadoop-aws/tools/hadoop-aws/committer_architecture.html
https://riak.com/index.html
https://couchdb.apache.org/
https://doc.akka.io/docs/akka/2.9.2/stream/index.html
https://doc.akka.io/docs/akka/2.9.2/stream/index.html
https://doc.akka.io/docs/alpakka/7.0.2/index.html
https://www.rabbitmq.com/
https://doc.akka.io/docs/akka-http/10.6.1/index.html

[13] T. Kamada, S. Matsuoka, and A. Yonezawa, “Efficient parallel global garbage collection on
massively parallel computers,” in Proceedings Supercomputing ’94, Washington, DC, USA,

November 14-18, 1994, G. M. Johnson, Ed. IEEE Computer Society, 1994, pp. 79–88.

[14] I. Puaut, “A distributed garbage collector for active objects,” in PARLE’94 Parallel Architec-

tures and Languages Europe, G. Goos, J. Hartmanis, C. Halatsis, D. Maritsas, G. Philokyprou,
and S. Theodoridis, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994, vol. 817, pp.
539–552.

[15] D. Kafura, M.Mukherji, andD.Washabaugh, “Concurrent and distributed garbage collection
of active objects,” IEEE Transactions on Parallel and Distributed Systems, vol. 6, no. 4, pp. 337–
350, Apr. 1995.

[16] P. Dickman, “Incremental, distributed orphan detection and actor garbage collection using
graph partitioning and euler cycles,” in Distributed Algorithms, 10th International Workshop,

WDAG ’96, Bologna, Italy, October 9-11, 1996, Proceedings, ser. Lecture Notes in Computer
Science, Ö. Babaoglu and K. Marzullo, Eds., vol. 1151. Springer, 1996, pp. 141–158.

[17] A. Vardhan and G. Agha, “Using passive object garbage collection algorithms for garbage
collection of active objects,” ACM SIGPLAN Notices, vol. 38, no. 2 supplement, p. 106, Feb.
2003.

[18] W.-J. Wang and C. A. Varela, “Distributed garbage collection for mobile actor systems: The
pseudo root approach,” in Advances in Grid and Pervasive Computing, Y.-C. Chung and J. E.
Moreira, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, vol. 3947, pp. 360–372.

[19] H.-J. Boehm, “Space efficient conservative garbage collection,” in Proceedings of the ACM

SIGPLAN’93 Conference on Programming Language Design and Implementation (PLDI), Albu-

querque, New Mexico, USA, June 23-25, 1993, R. Cartwright, Ed. ACM, 1993, pp. 197–206.

[20] M. Bagherzadeh, N. Fireman, A. Shawesh, and R. Khatchadourian, “Actor concurrency bugs:
A comprehensive study on symptoms, root causes, API usages, and differences,” Proc. ACM
Program. Lang., vol. 4, no. OOPSLA, Nov. 2020.

[21] K. M. Chandy and L. Lamport, “Distributed snapshots: Determining global states of dis-
tributed systems,” ACM Transactions on Computer Systems, vol. 3, no. 1, pp. 63–75, Feb. 1985.

[22] G. Agha, ACTORS - A Model of Concurrent Computation in Distributed Systems, ser. MIT
Press Series in Artificial Intelligence. Cambridge, MA: MIT Press, 1990.

[23] P. Haller and A. Loiko, “LaCasa: Lightweight affinity and object capabilities in Scala,” in
Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Program-

ming, Systems, Languages, and Applications. Amsterdam Netherlands: ACM, Oct. 2016, pp.
272–291.

[24] S. Clebsch, S. Drossopoulou, S. Blessing, and A. McNeil, “Deny capabilities for safe, fast
actors,” in Proceedings of the 5th International Workshop on Programming Based on Actors,

Agents, and Decentralized Control. Pittsburgh PA USA: ACM, Oct. 2015, pp. 1–12.

127

[25] G. A. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott, “A foundation for actor computation,”
Journal of Functional Programming, vol. 7, no. 1, pp. 1–72, Jan. 1997.

[26] “Akka,” https://akka.io/, 2024.

[27] P. R. Wilson, “Uniprocessor garbage collection techniques,” in Memory Management, Inter-

national Workshop IWMM 92, St. Malo, France, September 17-19, 1992, Proceedings, ser. Lec-
ture Notes in Computer Science, Y. Bekkers and J. Cohen, Eds., vol. 637. Springer, 1992,
pp. 1–42.

[28] R. E. Jones, A. L. Hosking, and J. E. B. Moss, The Garbage Collection Handbook: The Art

of Automatic Memory Management, ser. Chapman and Hall / CRC Applied Algorithms and
Data Structures Series. CRC Press, 2011.

[29] J. Armstrong, R. Virding, and M. Williams, Concurrent programming in ERLANG. Prentice
Hall, 1993.

[30] A. D. Kshemkalyani, M. Raynal, and M. Singhal, “An introduction to snapshot algorithms
in distributed computing,” Distributed Syst. Eng., vol. 2, no. 4, pp. 224–233, 1995.

[31] D. Bevan, “Distributed garbage collection using reference counting,” in PARLE Paral-

lel Architectures and Languages Europe, G. Goos, J. Hartmanis, D. Barstow, W. Brauer,
P. Brinch Hansen, D. Gries, D. Luckham, C. Moler, A. Pnueli, G. Seegmüller, J. Stoer,
N. Wirth, J. W. Bakker, A. J. Nijman, and P. C. Treleaven, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1987, vol. 259, pp. 176–187.

[32] P. Watson and I. Watson, “An efficient garbage collection scheme for parallel computer ar-
chitectures,” in PARLE Parallel Architectures and Languages Europe, G. Goos, J. Hartmanis,
D. Barstow, W. Brauer, P. Brinch Hansen, D. Gries, D. Luckham, C. Moler, A. Pnueli, G. Seeg-
müller, J. Stoer, N. Wirth, J. W. Bakker, A. J. Nijman, and P. C. Treleaven, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1987, vol. 259, pp. 432–443.

[33] A. Birrell, D. Evers, G. Nelson, S. Owicki, and G. Wobber, “Distributed garbage collection
for network objects,” Digital Systems Research Center, 130 Lytton Avenue, Palo Alto, CA
94301, Technical Report 116, 1993.

[34] P. P. Pirinen, “Barrier techniques for incremental tracing,” in International Symposium on

Memory Management, ISMM ’98, Vancouver, British Columbia, Canada, 17-19 October, 1998,

Conference Proceedings, S. L. P. Jones and R. E. Jones, Eds. ACM, 1998, pp. 20–25.

[35] B. Liskov and R. Ladin, “Highly-available distributed services and fault-tolerant distributed
garbage collection,” in Proceedings of the Fifth Annual ACM Symposium on Principles of Dis-

tributed Computing, Calgary, Alberta, Canada, August 11-13, 1986, J. Y. Halpern, Ed. ACM,
1986, pp. 29–39.

[36] L. V. Mancini and S. K. Shrivastava, “Fault-tolerant reference counting for garbage collection
in distributed systems,” Comput. J., vol. 34, no. 6, pp. 503–513, 1991.

128

https://akka.io/

[37] D. Plainfossé and M. Shapiro, “A survey of distributed garbage collection techniques,” in
Memory Management, International Workshop IWMM 95, Kinross, UK, September 27-29, 1995,

Proceedings, 1995, pp. 211–249.

[38] J. M. Piquer, “Indirect reference counting: A distributed garbage collection algorithm,” in
Parle ’91 Parallel Architectures and Languages Europe, E. H. L. Aarts, J. van Leeuwen, and
M. Rem, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991, vol. 505, pp. 150–165.

[39] L. Moreau, P. Dickman, and R. E. Jones, “Birrell’s distributed reference listing revisited,”
ACM Trans. Program. Lang. Syst., vol. 27, no. 6, pp. 1344–1395, 2005.

[40] N. Venkatasubramanian, “Hierarchical garbage collection in scalable distributed systems,”
M.S. thesis, University of Illinois at Urbana-Champaign, 1992.

[41] N. Venkatasubramanian and C. L. Talcott, “Integration of resource management activities
in distributed systems,” Stanford University, Technical Report, May 1999.

[42] A. Vardhan, “Distributed garbage collection of active objects: A transformation and its ap-
plications to java programming,” in MS Thesis, University of Illinois, 1998.

[43] W.-J. Wang, C. Varela, F.-H. Hsu, and C.-H. Tang, “Actor garbage collection using vertex-
preserving actor-to-object graph transformations,” in Advances in Grid and Pervasive Com-

puting, D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor,
O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi,
G. Weikum, P. Bellavista, R.-S. Chang, H.-C. Chao, S.-F. Lin, and P. M. A. Sloot, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, vol. 6104, pp. 244–255.

[44] S. E. Abdullahi andG. A. Ringwood, “Garbage collecting the Internet: A survey of distributed
garbage collection,” ACM Computing Surveys, vol. 30, no. 3, pp. 330–373, Sep. 1998.

[45] T. J. Desell and C. A. Varela, “SALSA Lite: A hash-based actor runtime for efficient lo-
cal concurrency,” in Concurrent Objects and Beyond - Papers Dedicated to Akinori Yonezawa

on the Occasion of His 65th Birthday, ser. Lecture Notes in Computer Science, G. A. Agha,
A. Igarashi, N. Kobayashi, H. Masuhara, S. Matsuoka, E. Shibayama, and K. Taura, Eds., vol.
8665. Springer, 2014, pp. 144–166.

[46] F. Mattern, “Algorithms for distributed termination detection,”Distributed Computing, vol. 2,
no. 3, pp. 161–175, Sep. 1987.

[47] W.-J. Wang, “Conservative snapshot-based actor garbage collection for distributed mobile
actor systems,” Telecommunication Systems, June 2011.

[48] S. Alagar and S. Venkatesan, “An optimal algorithm for distributed snapshots with causal
message ordering,” Inf. Process. Lett., vol. 50, no. 6, pp. 311–316, 1994.

[49] C. J. Fidge, “Timestamps in message-passing systems that preserve the partial ordering,”
Australian Computer Science Communications, vol. 10, no. 1, pp. 56–66, Feb. 1988.

129

[50] S. Blessing, S. Clebsch, and S. Drossopoulou, “Tree topologies for causal message delivery,”
in Proceedings of the 7th ACM SIGPLAN International Workshop on Programming Based on

Actors, Agents, and Decentralized Control - AGERE 2017. Vancouver, BC, Canada: ACM
Press, 2017, pp. 1–10.

[51] N. Venkatasubramanian and C. Talcott, “Reasoning about meta level activities in open dis-
tributed systems,” in Proceedings of the Fourteenth Annual ACM Symposium on Principles

of Distributed Computing - PODC ’95. Ottowa, Ontario, Canada: ACM Press, 1995, pp.
144–152.

[52] H. Lieberman and C. Hewitt, “A real-time garbage collector based on the lifetimes of objects,”
Communications of the ACM, vol. 26, no. 6, pp. 419–429, 1983.

[53] C. Hewitt and H. G. Baker, “Laws for communicating parallel processes,” in Information

Processing, Proceedings of the 7th IFIP Congress 1977, Toronto, Canada, August 8-12, 1977,
B. Gilchrist, Ed. North-Holland, 1977, pp. 987–992.

[54] J. Meseguer, “Conditional rewriting logic: Deduction, models and concurrency,” in Condi-

tional and Typed Rewriting Systems, 2nd International CTRS Workshop, Montreal, Canada,

June 11-14, 1990, Proceedings, 1990, pp. 64–91.

[55] W. D. Clinger, “Foundations of actor semantics,” Massachusetts Institute of Technology /
Massachusetts Institute of Technology, USA, Tech. Rep., 1981.

[56] D. Plyukhin and G. Agha, “Scalable termination detection for distributed actor systems,”
in 31st International Conference on Concurrency Theory, CONCUR 2020, September 1-4, 2020,

Vienna, Austria (Virtual Conference), ser. LIPIcs, I. Konnov and L. Kovács, Eds., vol. 171.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, pp. 11:1–11:23.

[57] J. Armstrong, “Making reliable distributed systems in the presence of software errors,” Ph.D.
dissertation, Royal Institute of Technology, Stockholm, Sweden, 2003.

[58] G. Neiger and S. Toueg, “Automatically increasing the fault-tolerance of distributed sys-
tems,” in Proceedings of the Seventh Annual ACM Symposium on Principles of Distributed

Computing, Toronto, Ontario, Canada, August 15-17, 1988, D. Dolev, Ed. ACM, 1988, pp.
248–262.

[59] S.M. Imam andV. Sarkar, “Savina - An actor benchmark suite: Enabling empirical evaluation
of actor libraries,” in Proceedings of the 4th International Workshop on Programming Based on

Actors Agents & Decentralized Control - AGERE! ’14. Portland, Oregon, USA: ACM Press,
2014, pp. 67–80.

[60] S. Blessing, K. Fernandez-Reyes, A. M. Yang, S. Drossopoulou, and T. Wrigstad, “Run, actor,
run: Towards cross-actor language benchmarking,” in Proceedings of the 9th ACM SIGPLAN

International Workshop on Programming Based on Actors, Agents, and Decentralized Control

- AGERE 2019. Athens, Greece: ACM Press, 2019, pp. 41–50.

130

[61] H. Svensson and L.-∀∀∀∀∀∀ . Fredlund, “A more accurate semantics for distributed erlang,” in Pro-

ceedings of the 2007 SIGPLAN Workshop on ERLANG Workshop. Freiburg Germany: ACM,
Oct. 2007, pp. 43–54.

[62] H. Svensson, L.-∀∀∀∀∀∀ . Fredlund, and C. Benac Earle, “A unified semantics for future Erlang,” in
Proceedings of the 9th ACM SIGPLANWorkshop on Erlang. Baltimore Maryland USA: ACM,
Sep. 2010, pp. 23–32.

[63] “Cluster Membership Service • Akka Documentation,” https://doc.akka.io/docs/akka/2.9.2/
typed/cluster-membership.html, 2024.

[64] A. M. Ricciardi and K. P. Birman, “Using process groups to implement failure detection
in asynchronous environments,” in Proceedings of the Tenth Annual ACM Symposium on

Principles of Distributed Computing - PODC ’91. Montreal, Quebec, Canada: ACM Press,
1991, pp. 341–353.

[65] “Message Delivery Reliability • Akka Documentation,” https://doc.akka.io/docs/akka/2.9.2/
general/message-delivery-reliability.html, 2024.

[66] C. Varela and G. Agha, “Programming dynamically reconfigurable open systems with
SALSA,” ACM SIGPLAN Notices, vol. 36, no. 12, pp. 20–34, Dec. 2001.

[67] N. Hayashibara, X. Défago, R. Yared, and T. Katayama, “The 𝜙 Accrual Failure Detector,”
in 23rd International Symposium on Reliable Distributed Systems (SRDS 2004), 18-20 October

2004, Florianpolis, Brazil. IEEE Computer Society, 2004, pp. 66–78.

[68] “Split Brain Resolver • Akka Documentation,” https://doc.akka.io/docs/akka/2.9.2/
split-brain-resolver.html, 2024.

[69] W. Shakespeare, Romeo and Juliet, 1597.

[70] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable distributed systems,”
Journal of the ACM, vol. 43, no. 2, pp. 225–267, Mar. 1996.

[71] L. Lamport, “The temporal logic of actions,” ACM Transactions on Programming Languages

and Systems, vol. 16, no. 3, pp. 872–923, May 1994.

[72] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,” Communica-

tions of the ACM, vol. 21, no. 7, pp. 558–565, 1978.

[73] M. Shapiro, N. M. Preguiça, C. Baquero, and M. Zawirski, “Conflict-Free Replicated Data
Types,” in Stabilization, Safety, and Security of Distributed Systems - 13th International Sym-

posium, SSS 2011, Grenoble, France, October 10-12, 2011. Proceedings, ser. Lecture Notes in
Computer Science, X. Défago, F. Petit, and V. Villain, Eds., vol. 6976. Springer, 2011, pp.
386–400.

[74] S. T. Allen, “Pony - About the Pony cycle detector,” https://github.com/ponylang/ponyc/
blob/fa8550ece582881e55e664e2bc0d8a5d8df12f4b/src/libponyrt/gc/cycle.c, Nov. 2022.

131

https://doc.akka.io/docs/akka/2.9.2/typed/cluster-membership.html
https://doc.akka.io/docs/akka/2.9.2/typed/cluster-membership.html
https://doc.akka.io/docs/akka/2.9.2/general/message-delivery-reliability.html
https://doc.akka.io/docs/akka/2.9.2/general/message-delivery-reliability.html
https://doc.akka.io/docs/akka/2.9.2/split-brain-resolver.html
https://doc.akka.io/docs/akka/2.9.2/split-brain-resolver.html
https://github.com/ponylang/ponyc/blob/fa8550ece582881e55e664e2bc0d8a5d8df12f4b/src/libponyrt/gc/cycle.c
https://github.com/ponylang/ponyc/blob/fa8550ece582881e55e664e2bc0d8a5d8df12f4b/src/libponyrt/gc/cycle.c

A

TLA+ Specifications

A.1 The Fault Model

module FaultModel
extends Integers, FiniteSets, Bags, TLC

The model is parameterized by sets ranging over actor names and node identifiers:

constant
ActorName, Every actor has a unique name; this set ranges over all names.

NodeID, Every node has a unique identifier; this set ranges over all IDs.

null A TLA+-specific constant, used to indicate values where a partial map

is undefined.

A configuration is a 4-tuple (actors, location, msgs, shunned):

variable
actors, A partial map from actor names to actor states (i.e. behaviors).

location, A partial map from actor names to actor locations (i.e. nodes).

msgs, A bag (i.e. multiset) of messages to be delivered.

shunned A relation on nodes, such that shunned [N 1,N 2] if N2 shuns N1.

A message is modeled as a record. The origin field indicates the node that produced the message; admitted indicates
whether the message was admitted into the destination node; target indicates the name of the destination actor; and
refs indicates the set of actor names contained inside the message.
We do not explicitly model the payload of the message (aside from the refs) because it is not relevant to garbage
collection.

Message Δ
= [

origin : NodeID,

admitted : boolean ,

target : ActorName,

132

APPENDIX A. TLA+ Specifications

refs : subset ActorName
]

INITIALIZATION AND BASIC INVARIANTS
ActorState is a record that models the state of an actor:

•status indicates whether the actor is busy, idle, or halted.
•isSticky indicates whether the actor is sticky, i.e. able to spontaneously change state from "idle" to "busy".
•active is a map representing the number of references this actor has to every other actor.
•monitored is the set of actors monitored by this actor.

ActorState Δ
= [

status : {“busy”, “idle”, “halted”},
isSticky : boolean ,

active : [ActorName → Nat],
monitored : subset ActorName

]

TypeOK is an invariant that specifies the type of each component in the configuration.
In TLA+ syntax, a conjunction e1 ∧ e2 ∧ e3 can be written as follows:
∧ e1
∧ e2
∧ e3
We will use this special syntax for better readability.

TypeOK Δ
=

∧ actors ∈ [ActorName → ActorState ∪ {null }]
∧ location ∈ [ActorName → NodeID ∪ {null }]
∧ BagToSet (msgs) ⊆ Message

The above invariant states that actors and location are partial maps and that msgs is a bag of messages.
The initial configuration consists of an actor a located on node N. The actor is a busy sticky actor with one reference
to itself.
The expression (a :> 1) @@ [b ∈ ActorName |-> 0] defines a function which maps each b to 0 except for a,
which is mapped to 1.

InitialConfiguration (a, N) Δ
=

let state Δ
= [

status : “busy”,
isSticky : true,

133

APPENDIX A. TLA+ Specifications

active : (a :> 1)@@ [b ∈ ActorName ↦→ 0]
]
in
∧ actors = (a :> state)@@ [b ∈ ActorName ↦→ null]
∧ location = (a :> N)@@ [b ∈ ActorName ↦→ null]
∧msgs = EmptyBag

actors[b] and location[b] are null (i.e. undefined) for every actor except a; we set actors[a] equal to state (defined
above) and location[a] equal to node N.

DEFINITIONS

Below are TLA+ mechanisms for computing the largest subset of D that satisfies F, and for selecting fresh actor
names.

LargestSubset (D, F ()) Δ
= D \ choose S ∈ subset D : F (D \ S)

FreshActorName Δ
= if ∃ a ∈ ActorName : actors [a] = null

then {choose a ∈ ActorName : actors [a] = null }
else {}

pdom(S) is the domain over which the partial function S is defined.

pdom (S) Δ
= {a ∈ domain S : S [a] ≠ null }

The following functions are shorthand for manipulating bags of messages:

put (bag, x) Δ
= bag ⊕ SetToBag ({x }) Adds x to the bag.

remove (bag, x) Δ
= bag ⊖ SetToBag ({x }) Removes x from the bag.

replace (bag, x , y) Δ
= put (remove (bag, x), y) Replaces x with y in the bag.

We define the following sets to range over created, busy, idle, halted, and sticky actors.

Actors Δ
= pdom (actors)

BusyActors Δ
= {a ∈ Actors : actors [a] .status = “busy”}

IdleActors Δ
= {a ∈ Actors : actors [a] .status = “idle”}

HaltedActors Δ
= {a ∈ Actors : actors [a] .status = “halted”}

StickyActors Δ
= {a ∈ Actors : actors [a] .isSticky}

A message is admissible if it is not already admitted and the origin node is not shunned by the destination node.

AdmissibleMsgs Δ
= {m ∈ BagToSet (msgs) :

134

APPENDIX A. TLA+ Specifications

∧ ¬m .admitted
∧ ¬shunned [m .origin, location [m .target]]}

AdmittedMsgs Δ
= {m ∈ BagToSet (msgs) : m .admitted }

deliverableTo(a) is the set of messages to an actor a is the set of messages m for which a is the target, and m has
either been admitted or can be admitted. In-flight messages from shunned nodes are excluded from this set.
An actor’s acquaintances acqs(a) are the set of actors for which it has references.
An actor’s inverse acquaintances iacqs(b) are the actors for which it is an acquaintance.
An actor’s potential acquaintances pacqs(a) are the actors for which it has a reference or can possibly receive a
reference due to an undelivered message.
An actor’s potential inverse acquaintances piacqs(a) are the actors for which it is a potential acquaintance.

deliverableTo (a) Δ
= {m ∈ BagToSet (msgs) : ∧m .target = a

∧ (m .admitted ∨m ∈ AdmissibleMsgs)}
acqs (a) Δ

= {b ∈ ActorName : actors [a] .active [b] > 0}
iacqs (b) Δ

= {a ∈ Actors : b ∈ acqs (a)}
pacqs (a) Δ

= {b ∈ ActorName : b ∈ acqs (a) ∨ ∃m ∈ deliverableTo (a) : b ∈ m .refs}
piacqs (b) Δ

= {a ∈ Actors : b ∈ pacqs (a)}

admittedMsgsTo (a) Δ
= {m ∈ deliverableTo (a) : m .admitted }

monitoredBy (b) Δ
= actors [b] .monitored

An actor is blocked if it is idle and has no deliverable messages. Otherwise, the actor is unblocked.

Blocked Δ
= {a ∈ IdleActors : deliverableTo (a) = {}}

Unblocked Δ
= Actors \Blocked

The exiled nodes are the largest nontrivial faction where every non-exiled node has shunned every exiled node.
Likewise, a faction of nodes G is apparently exiled if every node outside of G has taken an ingress snapshot in which
every node of G is shunned.

ExiledNodes Δ
=

LargestSubset (NodeID, lambda G :
∧G ≠ NodeID
∧ ∀N 1 ∈ G, N 2 ∈ NodeID \G : shunned [N 1, N 2]

)
NonExiledNodes Δ

= NodeID \ExiledNodes
ExiledActors Δ

= {a ∈ Actors : location [a] ∈ ExiledNodes}
FailedActors Δ

= HaltedActors ∪ ExiledActors
HealthyActors Δ

= Actors \FailedActors

ShunnedBy (N 2) Δ
= {N 1 ∈ NodeID : shunned [N 1, N 2]}

135

APPENDIX A. TLA+ Specifications

ShunnableBy (N 1) Δ
= (NodeID \ {N 1}) \ ShunnedBy (N 1)

NeitherShuns (N 1) Δ
= {N 2 ∈ NodeID : ¬shunned [N 1, N 2] ∧ ¬shunned [N 2, N 1]}

TRANSITIONS

This section of the model declares the events that may occur in an execution and how each event updates the
configuration.
The events of an execution are defined as "actions" in TLA+:
"An action represents a relation between old states and new states, where the unprimed variables refer to the old
state and the primed variables refer to the new state. Thus, y = x’ + 1 is the relation asserting that the value of y in
the old state is one greater than the value of x in the new state. An atomic operation of a concurrent program will
be represented in TLA by an action." [Lamport 1994]
We first define each event (Idle, Spawn, Send, ...) individually, and then define the Next relation which specifies all
the possible transitions a configuration can take.

Idle (a) Δ
=

A busy actor a can become idle by changing its status.
The notation below states that, as a result of the Idle event, the actors component of the configuration will change
and the remaining components do not change.
Specifically, the new value actors is identical to the old value, except that the status of actor a is set to "idle".

∧ actors′ = [actors except ! [a] .status = “idle”]
∧ unchanged ⟨msgs, location, shunned⟩

Spawn (a, b, N) Δ
=

A busy actor a can spawn a fresh actor b onto a non-shunned node.

∧ actors′ = [actors except
! [a] .active [b] = 1, The parent obtains a reference to the child.

! [b] = [
status : “busy”, The child is busy,

isSticky : false, not sticky,

active : (b :> 1)@@ [c ∈ ActorName ↦→ null], has a reference to itself,

monitored : {} and monitors nobody.

]]
∧ location′ = [location except ! [b] = N]
∧ unchanged ⟨msgs, shunned⟩

Deactivate (a, b) Δ
=

A busy actor can remove references from its state.

∧ actors′ = [actors except ! [a] .active [b] = 0]

136

APPENDIX A. TLA+ Specifications

∧ unchanged ⟨location, msgs, shunned⟩

Send (a, b, m) Δ
=

A busy actor can send messages to its acquaintances.

∧msgs′ = put (msgs, m) Add message m to the msgs bag.

∧ unchanged ⟨actors, location, shunned⟩

Receive (a, m) Δ
=

An idle actor can receive a message, becoming busy.

∧ actors′ = [actors except ! [a] .status = “busy”]
∧msgs′ = remove (msgs, m) Remove m from the msgs bag.

∧ unchanged ⟨location, shunned⟩

Halt (a) Δ
=

Busy actors can halt.

∧ actors′ = [actors except ! [a] .status = “halted”]
∧ unchanged ⟨location, msgs, shunned⟩

Monitor (a, b) Δ
=

Busy actors can monitor their acquaintances.

∧ actors′ = [actors except ! [a] .monitored = @ ∪ {b}] Add b to the monitored set.

∧ unchanged ⟨location, msgs, shunned⟩

Notify (a, b) Δ
=

Monitoring actors can become "busy" after the actors they monitor fail.

∧ actors′ = [actors except ! [a] .status = “busy”, ! [a] .monitored = @ \ {b}]
∧ unchanged ⟨location, msgs, shunned⟩

Unmonitor (a, b) Δ
=

Busy actors can stop monitoring actors.

∧ actors′ = [actors except ! [a] .monitored = @ \ {b}]
∧ unchanged ⟨location, msgs, shunned⟩

Register (a) Δ
=

Actors can register as sticky to spontaneously be awoken from "idle" state.

∧ actors′ = [actors except ! [a] .isSticky = true]
∧ unchanged ⟨location, msgs, shunned⟩

Wakeup (a) Δ
=

A sticky actor can be awoken.

137

APPENDIX A. TLA+ Specifications

∧ actors′ = [actors except ! [a] .status = “busy”]
∧ unchanged ⟨location, msgs, shunned⟩

Unregister (a) Δ
=

Actors can unregister as sticky.

∧ actors′ = [actors except ! [a] .isSticky = false]
∧ unchanged ⟨location, msgs, shunned⟩

Admit (m) Δ
=

In-flight messages can be admitted. If node N1 shuns node N2, then messages from N1 can no longer be delivered
to N2 unless they are already admitted.

∧msgs′ = replace (msgs, m, [m except ! .admitted = true])
∧ unchanged ⟨actors, location, shunned⟩

Drop (m) Δ
=

Any message can spontaneously be dropped.

∧msgs′ = remove (msgs, m)
∧ unchanged ⟨actors, location, shunned⟩

Shun (N 1, N 2) Δ
=

A non-exiled node can shun another node.

∧ shunned ′ = [shunned except ! [N 1, N 2] = true]
∧ unchanged ⟨actors, msgs, location⟩

The following Exile event can safely be used in place of the Shun event to simplify reasoning and reduce the model
checking state space. This is safe because, for any execution in which a group of nodes G1 all shuns another group
G2, there is an equivalent execution in which all Shun events happen successively.

Exile (G1, G2) Δ
=

∧ shunned ′ = [N 1 ∈ G1, N 2 ∈ G2 ↦→ true]@@ shunned
∧ unchanged ⟨actors, msgs, location⟩

Init defines the initial configuration, choosing an arbitrary name and location for the initial actor.

Init Δ
= InitialConfiguration (

choose a ∈ ActorName : true, Choose an arbitrary name for the initial actor.

choose N ∈ NodeID : true Choose an arbitrary location for the actor.

)

138

APPENDIX A. TLA+ Specifications

Next defines the transition relation on configurations, defined as a TLA action, such that configuration K1 can
atomically transition to configuration K2 if the relation (K1)Next(K2) holds.
For example, let K1 be a configuration with two busy actors a,b and an idle actor c. Then K1 can transition to a
configuration K2 in which a is busy and b,c are idle, because of the Idle transition below.

Next Δ
=

∨ ∃ a ∈ BusyActors \ExiledActors : Idle (a)
∨ ∃ a ∈ BusyActors \ExiledActors : ∃ b ∈ FreshActorName :
∃N ∈ NeitherShuns (location [a]) : Spawn (a, b, N)
∨ ∃ a ∈ BusyActors \ExiledActors : ∃ b ∈ acqs (a) : Deactivate (a, b)
∨ ∃ a ∈ BusyActors \ExiledActors : ∃ b ∈ acqs (a) : ∃ refs ∈ subset acqs (a) :

Send (a, b, [origin ↦→ location [a],
admitted ↦→ location [b] = location [a],
target ↦→ b,
refs ↦→ refs])

∨ ∃ a ∈ IdleActors \ExiledActors : ∃m ∈ admittedMsgsTo (a) : Receive (a, m)
∨ ∃ a ∈ BusyActors \ExiledActors : Halt (a)
∨ ∃ a ∈ BusyActors \ExiledActors : ∃ b ∈ acqs (a) : Monitor (a, b)
∨ ∃ a ∈ IdleActors \ExiledActors : ∃ b ∈ FailedActors ∩monitoredBy (a) :

Notify (a, b)
∨ ∃ a ∈ BusyActors \ExiledActors : ∃ b ∈ monitoredBy (a) : Unmonitor (a, b)
∨ ∃ a ∈ (BusyActors \ StickyActors) \ExiledActors : Register (a)
∨ ∃ a ∈ (IdleActors ∩ StickyActors) \ExiledActors : Wakeup (a)
∨ ∃ a ∈ (BusyActors ∩ StickyActors) \ExiledActors : Unregister (a)
∨ ∃m ∈ AdmissibleMsgs : location [m .target] ∉ ExiledNodes ∧ Admit (m)
∨ ∃m ∈ AdmissibleMsgs ∪ AdmittedMsgs : location [m .target] ∉ ExiledNodes ∧ Drop (m)
∨ ∃N 2 ∈ NonExiledNodes : ∃N 1 ∈ ShunnableBy (N 2) : Shun (N 1, N 2)

GARBAGE

An actor is potentially unblocked if it is busy or can become busy. (Halted and exiled actors automatically fail this
definition.) Similarly, an actor is potentially unblocked up-to-a-fault if it is busy or it can become busy in a non-faulty
extension of this execution.

isPotentiallyUnblockedUpToAFault (S) Δ
=

∧ StickyActors \FailedActors ⊆ S
∧ Unblocked \FailedActors ⊆ S

139

APPENDIX A. TLA+ Specifications

∧ ∀a ∈ S , b ∈ HealthyActors :
a ∈ piacqs (b) =⇒ b ∈ S

∧ ∀a ∈ S ∪ FailedActors, b ∈ HealthyActors :
a ∈ monitoredBy (b) =⇒ b ∈ S

An actor is potentially unblocked if it is potentially unblocked up-to-a-fault or it monitors any remote actor. This is
because remote actors can always become exiled, causing the monitoring actor to be notified.

isPotentiallyUnblocked (S) Δ
=

∧ isPotentiallyUnblockedUpToAFault (S)
∧ ∀a ∈ Actors, b ∈ HealthyActors :
∧ (a ∈ monitoredBy (b) ∧ location [a] ≠ location [b] =⇒ b ∈ S)

An actor is quiescent if it is not potentially unblocked. Likewise for quiescence up-to-a-fault.

PotentiallyUnblockedUpToAFault Δ
=

choose S ∈ subset HealthyActors : isPotentiallyUnblockedUpToAFault (S)
QuiescentUpToAFault Δ

= Actors \PotentiallyUnblockedUpToAFault

PotentiallyUnblocked Δ
=

choose S ∈ subset HealthyActors : isPotentiallyUnblocked (S)
Quiescent Δ

= Actors \PotentiallyUnblocked

Both definitions characterize a subset of the idle actors. The difference between the definitions is that quiescence
up-to-a-fault is only a stable property in non-faulty executions.

QuiescentImpliesIdle Δ
= Quiescent ⊆ (IdleActors ∪ FailedActors)

QuiescentUpToAFaultImpliesIdle Δ
= QuiescentUpToAFault ⊆ (IdleActors ∪ FailedActors)

A.2 Common Definitions

module Common
extends Integers, FiniteSets, Bags, TLC

This module defines variables and functions used in all following models.

constant
ActorName The names of participating actors.

variable
actors, actors[a] is the state of actor a.

140

APPENDIX A. TLA+ Specifications

msgs, msgs is a bag of all undelivered messages.

snapshots snapshots[a] is a snapshot of some actor’s state.

null is an arbitrary value used to signal that an expression was undefined.

constant null

Assuming map1 has type [D1 -> Nat] and map2 has type [D2 -> Nat] where D2 is a subset of D1, this operator
increments every map1[a] by the value of map2[a].

map1 ++map2 Δ
= [a ∈ domain map1 ↦→ if a ∈ domain map2

then map1[a] +map2[a]
else map1[a]]

map1 −−map2 Δ
= [a ∈ domain map1 ↦→ if a ∈ domain map2

then map1[a] −map2[a]
else map1[a]]

Notation for manipulating bags, i.e. multisets. TLA+ represents bags as functions from a set of elements to a count
of how many elements are in the bag.

put (bag, x) Δ
= bag ⊕ SetToBag ({x }) Adds x to the bag.

remove (bag, x) Δ
= bag ⊖ SetToBag ({x }) Removes x from the bag.

replace (bag, x , y) Δ
= put (remove (bag, x), y) Replaces x with y in the bag.

recursive removeAll (,) Removes all of S from the bag.

removeAll (bag, S) Δ
=

if S = {} then bag else
let x Δ

= choose x ∈ S : truein
removeAll (remove (bag, x), S \ {x })

removeWhere (bag, F ()) Δ
= Removes all elements satisfying F.

let S Δ
= {x ∈ domain bag : F (x)}in

[x ∈ domain bag \ S ↦→ bag [x]]
selectWhere (bag, F ()) Δ

= Finds all elements satisfying F.

let S Δ
= {x ∈ domain bag : F (x)}in

[x ∈ S ↦→ bag [x]]
BagUnionOfSets (bag) Δ

=

Assuming bag is a bag of sets, this will produce a bag with an instance of x for each set in bag that contains x.

let Count (x) Δ
= BagCardinality (selectWhere (bag, lambda s : x ∈ s))in

[x ∈ union domain bag ↦→ Count (x)]

141

APPENDIX A. TLA+ Specifications

Computes the sum
∑

x ∈ dom (f) f (x).

recursive sumOver (,)
sumOver (dom, map) Δ

= if dom = {} then 0 else
let x Δ

= choose x ∈ dom : truein
map [x] + sumOver (dom \ {x }, map)

sum (map) Δ
= sumOver (domain map, map)

The domain over which the partial function S is defined.

pdom (S) Δ
= {a ∈ domain S : S [a] ≠ null }

TLA+ mechanism for computing the largest subset of D that satisfies F.

LargestSubset (D, F ()) Δ
= D \ choose S ∈ subset D : F (D \ S)

TLA+ mechanism for deterministically picking a fresh actor name. If ActorName is a finite set and all names have
been exhausted, this operator produces the empty set.

FreshActorName Δ
= if ∃ a ∈ ActorName : actors [a] = null

then {choose a ∈ ActorName : actors [a] = null }
else {}

Actors Δ
= pdom (actors)

Snapshots Δ
= pdom (snapshots)

A.3 The Static Model

module Static
extends Common, Integers, FiniteSets, Bags, TLC

ActorState represents the GC-relevant state of an actor. - status indicates whether the actor is currently processing
a message. - received is the number of messages that this actor has received. - sent[b] is the number of messages
this actor has sent to b. - acqs is the set of actors that this actor is acquainted with.

ActorState Δ
= [

status : {“busy”, “idle”},
received : Nat,
sent : [ActorName → Nat],
acqs : subset ActorName

142

APPENDIX A. TLA+ Specifications

]

In this simple model, a message has only one field target representing the name of the destination actor. The payload
of the message is omitted.

Message Δ
= [target : ActorName]

actors is a partial mapping from actor names to actor states.
snapshots is also a partial mapping from actor names to actor states.
msgs is a bag of messages.

TypeOK Δ
=

∧ actors ∈ [ActorName → ActorState ∪ {null }]
∧ snapshots ∈ [ActorName → ActorState ∪ {null }]
∧ BagToSet (msgs) ⊆ Message

InitialActorState Δ
= [

status ↦→ “busy”,

sent ↦→ [b ∈ ActorName ↦→ 0],
received ↦→ 0,
acqs ↦→ {}

]

InitialConfiguration (actor , actorState) Δ
=

let state Δ
= [actorState except

! .acqs = {actor }
]

in
∧msgs = EmptyBag
∧ actors = [a ∈ ActorName ↦→ if a = actor then state else null]
∧ snapshots = [a ∈ ActorName ↦→ null]

DEFINITIONS

msgsTo (a) Δ
= {m ∈ BagToSet (msgs) : m .target = a}

acqs (a) Δ
= actors [a] .acqs

iacqs (b) Δ
= {a ∈ Actors : b ∈ acqs (a)}

BusyActors Δ
= {a ∈ Actors : actors [a] .status = “busy”}

IdleActors Δ
= {a ∈ Actors : actors [a] .status = “idle”}

143

APPENDIX A. TLA+ Specifications

Blocked Δ
= {a ∈ IdleActors : msgsTo (a) = {}}

Unblocked Δ
= Actors \Blocked

TRANSITIONS

Idle (a) Δ
=

∧ actors′ = [actors except ! [a] .status = “idle”]
∧ unchanged ⟨msgs, snapshots⟩

Send (a, b, m) Δ
=

∧ actors′ = [actors except ! [a] .sent [b] = @ + 1]
∧msgs′ = put (msgs, m)
∧ unchanged ⟨snapshots⟩

Receive (a, m) Δ
=

∧ actors′ = [actors except ! [a] .received = @ + 1, ! [a] .status = “busy”]
∧ msgs′ = remove (msgs, m)
∧ unchanged ⟨snapshots⟩

Snapshot (a) Δ
=

∧ snapshots [a] = null
∧ snapshots′ = [snapshots except ! [a] = actors [a]]
∧ unchanged ⟨msgs, actors⟩

Init Δ
=

InitialConfiguration (choose a ∈ ActorName : true, InitialActorState)

Next Δ
=

∨ ∃ a ∈ BusyActors : Idle (a)
∨ ∃ a ∈ BusyActors : ∃ b ∈ acqs (a) : Send (a, b, [target ↦→ b])
∨ ∃ a ∈ IdleActors : ∃m ∈ msgsTo (a) : Receive (a, m)
∨ ∃ a ∈ IdleActors ∪ BusyActors : Snapshot (a)

PotentiallyUnblocked Δ
=

choose S ∈ subset Actors : ∀a, b ∈ Actors :
∧ (a ∉ Blocked =⇒ a ∈ S)
∧ (a ∈ S ∧ a ∈ iacqs (b) =⇒ b ∈ S)

144

APPENDIX A. TLA+ Specifications

Quiescent Δ
= Actors \PotentiallyUnblocked

sent (b) Δ
= sum ([a ∈ Snapshots ↦→ snapshots [a] .sent [b]])

received (b) Δ
= if b ∈ Snapshots then snapshots [b] .received else 0

AppearsIdle Δ
= {a ∈ Snapshots : snapshots [a] .status = “idle”}

AppearsClosed Δ
= {b ∈ Snapshots : iacqs (b) ⊆ Snapshots}

AppearsBlocked Δ
= {b ∈ AppearsIdle ∩ AppearsClosed : sent (b) = received (b)}

AppearsUnblocked Δ
= Snapshots \AppearsBlocked

AppearsPotentiallyUnblocked Δ
=

choose S ∈ subset Snapshots : ∀a, b ∈ Snapshots :
∧ (a ∉ AppearsBlocked =⇒ a ∈ S)
∧ (a ∈ S ∧ a ∈ iacqs (b) =⇒ b ∈ S)

AppearsQuiescent Δ
= Snapshots \AppearsPotentiallyUnblocked

A set of snapshots is insufficient for b if:
1.b’s snapshot is out of date; or
2.b is reachable by an actor for which the snapshots are insufficient.

SnapshotsInsufficient Δ
=

choose S ∈ subset Actors : ∀a ∈ Actors :
∧ actors [a] ≠ snapshots [a] =⇒ a ∈ S
∧ ∀ b ∈ Actors :
∧ (a ∈ S ∧ a ∈ iacqs (b) =⇒ b ∈ S)

SnapshotsSufficient Δ
= Actors \ SnapshotsInsufficient

The specification captures the following properties:
Soundness: Every actor that appears quiescent is indeed quiescent.
Completeness: Every quiescent actor with a sufficient set of snapshots will appear quiescent.

Spec Δ
= (Quiescent ∩ SnapshotsSufficient) = AppearsQuiescent

A.4 The Dynamic Model

module Dynamic
extends Common, Integers, FiniteSets, Bags, TLC

145

APPENDIX A. TLA+ Specifications

ActorState represents the GC-relevant state of an actor. - status indicates whether the actor is currently processing
a message. - received is the number of messages that this actor has received. - sent[b] is the number of messages
this actor has sent to b. - active[b] is the number of active references to b in the state. - deactivated[b] is the number
of references to b that have been deactivated. - created[b,c] is the number of references to c that have been sent to b.

ActorState Δ
= [

status : {“busy”, “idle”},
received : Nat,
sent : [ActorName → Nat],
active : [ActorName → Nat],
deactivated : [ActorName → Nat],
created : [ActorName × ActorName → Nat]

]

A message consists of (a) the name of the destination actor, and (b) a set of references to other actors. Any other
data a message could contain is irrelevant for our purposes.

Message Δ
= [target : ActorName, refs : subset ActorName]

TypeOK Δ
=

∧ actors ∈ [ActorName → ActorState ∪ {null }]
∧ snapshots ∈ [ActorName → ActorState ∪ {null }]
∧ BagToSet (msgs) ⊆ Message

InitialActorState Δ
= [

status ↦→ “busy”,

sent ↦→ [b ∈ ActorName ↦→ 0],
received ↦→ 0,
active ↦→ [b ∈ ActorName ↦→ 0],
deactivated ↦→ [b ∈ ActorName ↦→ 0],
created ↦→ [b, c ∈ ActorName ↦→ 0]

]

In the initial configuration, there is one busy actor with a reference to itself.

InitialConfiguration (actor , actorState) Δ
=

let state Δ
= [actorState except

! .active = @ ++ (actor :> 1),
! .created = @ ++ (⟨actor , actor⟩ :> 1)
]

146

APPENDIX A. TLA+ Specifications

in
∧msgs = EmptyBag
∧ actors = [a ∈ ActorName ↦→ if a = actor then state else null]
∧ snapshots = [a ∈ ActorName ↦→ null]

DEFINITIONS

msgsTo (a) Δ
= {m ∈ BagToSet (msgs) : m .target = a}

acqs (a) Δ
= {b ∈ ActorName : actors [a] .active [b] > 0}

iacqs (b) Δ
= {a ∈ Actors : b ∈ acqs (a)}

pacqs (a) Δ
= {b ∈ ActorName : b ∈ acqs (a) ∨ ∃m ∈ msgsTo (a) : b ∈ m .refs}

piacqs (b) Δ
= {a ∈ Actors : b ∈ pacqs (a)}

pastAcqs (a) Δ
= {b ∈ ActorName : actors [a] .deactivated [b] > 0}

pastIAcqs (b) Δ
= {a ∈ Actors : b ∈ pastAcqs (a)}

BusyActors Δ
= {a ∈ Actors : actors [a] .status = “busy”}

IdleActors Δ
= {a ∈ Actors : actors [a] .status = “idle”}

Blocked Δ
= {a ∈ IdleActors : msgsTo (a) = {}}

Unblocked Δ
= Actors \Blocked

TRANSITIONS

Idle (a) Δ
=

∧ actors′ = [actors except ! [a] .status = “idle”]
∧ unchanged ⟨msgs, snapshots⟩

Spawn (a, b, actorState) Δ
=

∧ actors′ = [actors except
! [a] .active [b] = 1, Parent has a reference to the child.

! [b] = [
actorState except
! .active = @ ++ (b :> 1), Child has a reference to itself.

! .created = @ ++ (⟨b, b⟩ :> 1@@ ⟨a, b⟩ :> 1) Child knows about both references.

]
]

∧ unchanged ⟨snapshots, msgs⟩

147

APPENDIX A. TLA+ Specifications

Deactivate (a, b) Δ
=

∧ actors′ = [actors except
! [a] .deactivated [b] = @ + actors [a] .active [b],
! [a] .active [b] = 0
]

∧ unchanged ⟨msgs, snapshots⟩

Send (a, b, m) Δ
=

∧ actors′ = [actors except
! [a] .sent [b] = @ + 1,
! [a] .created = @ ++ [⟨x , y⟩ ∈ {b} ×m .refs ↦→ 1]
]

Add this message to the msgs bag.

∧msgs′ = put (msgs, m)
∧ unchanged ⟨snapshots⟩

Receive (a, m) Δ
=

∧ actors′ = [actors except
! [a] .active = @ ++ [c ∈ m .refs ↦→ 1],
! [a] .received = @ + 1,
! [a] .status = “busy”]

Remove m from the msgs bag.

∧msgs′ = remove (msgs, m)
∧ unchanged ⟨snapshots⟩

Snapshot (a) Δ
=

∧ snapshots [a] = null
∧ snapshots′ = [snapshots except ! [a] = actors [a]]
∧ unchanged ⟨msgs, actors⟩

Init Δ
=

InitialConfiguration (choose a ∈ ActorName : true, InitialActorState)

Next Δ
=

∨ ∃ a ∈ BusyActors : Idle (a)
∨ ∃ a ∈ BusyActors : ∃ b ∈ FreshActorName : Spawn (a, b, InitialActorState)
∨ ∃ a ∈ BusyActors : ∃ b ∈ acqs (a) : Deactivate (a, b)
∨ ∃ a ∈ BusyActors : ∃ b ∈ acqs (a) : ∃ refs ∈ subset acqs (a) :

148

APPENDIX A. TLA+ Specifications

Send (a, b, [target ↦→ b, refs ↦→ refs])
∨ ∃ a ∈ IdleActors : ∃m ∈ msgsTo (a) : Receive (a, m)
∨ ∃ a ∈ IdleActors ∪ BusyActors : Snapshot (a)

PotentiallyUnblocked Δ
=

choose S ∈ subset Actors : ∀a, b ∈ Actors :
∧ (a ∉ Blocked =⇒ a ∈ S)
∧ (a ∈ S ∧ a ∈ piacqs (b) =⇒ b ∈ S)

Quiescent Δ
= Actors \PotentiallyUnblocked

created (a, b) Δ
= sum ([c ∈ Snapshots ↦→ snapshots [c] .created [a, b]])

deactivated (a, b) Δ
= if a ∈ Snapshots then snapshots [a] .deactivated [b] else 0

sent (b) Δ
= sum ([a ∈ Snapshots ↦→ snapshots [a] .sent [b]])

received (b) Δ
= if b ∈ Snapshots then snapshots [b] .received else 0

heretoIAcqs (c) Δ
= {b ∈ ActorName : created (b, c) > 0}

apparentIAcqs (c) Δ
= {b ∈ ActorName : created (b, c) > deactivated (b, c)}

AppearsIdle Δ
= {a ∈ Snapshots : snapshots [a] .status = “idle”}

AppearsClosed Δ
= {b ∈ Snapshots : heretoIAcqs (b) ⊆ Snapshots}

AppearsBlocked Δ
= {b ∈ AppearsIdle ∩ AppearsClosed : sent (b) = received (b)}

AppearsUnblocked Δ
= Snapshots \AppearsBlocked

AppearsPotentiallyUnblocked Δ
=

choose S ∈ subset Snapshots : ∀a, b ∈ Snapshots :
∧ (a ∉ AppearsBlocked =⇒ a ∈ S)
∧ (a ∈ S ∧ a ∈ apparentIAcqs (b) =⇒ b ∈ S)

AppearsQuiescent Δ
= Snapshots \AppearsPotentiallyUnblocked

An actor’s snapshot is up to date if its state has not changed since the last snapshot.

SnapshotUpToDate (a) Δ
= actors [a] = snapshots [a]

A snapshot from a past inverse acquaintance is recent enough if that the deactivated count in ths snapshot is up to
date with the actual deactivated count.

RecentEnough (a, b) Δ
=

a ∈ Snapshots ∧ actors [a] .deactivated [b] = snapshots [a] .deactivated [b]

A set of snapshots is insufficient for b if:

149

APPENDIX A. TLA+ Specifications

1.b’s snapshot is out of date;
2.b has a previous inverse acquaintance whose snapshot is not recent enough; or
3.b is potentially reachable by an actor for which the snapshots are insufficient.

SnapshotsInsufficient Δ
=

choose S ∈ subset Actors : ∀a ∈ Actors :
∧ (¬SnapshotUpToDate (a) =⇒ a ∈ S)
∧ ∀ b ∈ Actors :
∧ (a ∈ pastIAcqs (b) ∧ ¬RecentEnough (a, b) =⇒ b ∈ S)
∧ (a ∈ S ∧ a ∈ piacqs (b) =⇒ b ∈ S)

SnapshotsSufficient Δ
= Actors \ SnapshotsInsufficient

The specification captures the following properties:
1. Soundness: Every actor that appears quiescent is indeed quiescent.
2. Completeness: Every quiescent actor with a sufficient set of snapshots will appear quiescent.

Spec Δ
= (Quiescent ∩ SnapshotsSufficient) = AppearsQuiescent

TEST CASES: These invariants do not hold, showing that interesting forms of garbage can indeed exist and be
detected.

This invariant fails, showing that the set of quiescent actors is nonempty.

GarbageExists Δ
= ¬(Quiescent = {})

This invariant fails, showing that quiescence can be detected and that it is possible to obtain a sufficient set of
snapshots.

GarbageIsDetected Δ
= ¬(AppearsQuiescent = {})

An actor b can appear quiescentwhen a past inverse acquaintance a is not quiescent. This is because a has deactivated
all its references to b.

DeactivatedGarbage Δ
=

¬(∃ a, b ∈ Actors : a ≠ b ∧ a ∉ Quiescent ∧ b ∈ AppearsQuiescent ∧
actors [a] .active [b] = 0 ∧ actors [a] .deactivated [b] > 0)

A.5 The Monitors Model

module Monitors

150

APPENDIX A. TLA+ Specifications

This model extends the Dynamic model with sticky actors and monitoring.

extends Common, Integers, FiniteSets, Bags, TLC

Operators from the Dynamic model are imported within the D namespace.

D Δ
= instance Dynamic

ActorState Δ
= [

status : {“busy”, “idle”, “halted”}, NEW: Actors may become "halted".

received : Nat,
sent : [ActorName → Nat],
active : [ActorName → Nat],
deactivated : [ActorName → Nat],
created : [ActorName × ActorName → Nat],
monitored : subset ActorName, NEW: The set of actors monitored by this one.

isSticky : boolean NEW: Indicates whether this actor is a sticky actor.

]

TypeOK Δ
=

∧ actors ∈ [ActorName → ActorState ∪ {null }]
∧ snapshots ∈ [ActorName → ActorState ∪ {null }]
∧ BagToSet (msgs) ⊆ D !Message

InitialActorState Δ
=

D !InitialActorState @@ [
monitored ↦→ {},
isSticky ↦→ false

]

InitialConfiguration (actor , actorState) Δ
=

D !InitialConfiguration (actor , [actorState except ! .isSticky = true])

DEFINITIONS

msgsTo (a) Δ
= D !msgsTo (a)

acqs (a) Δ
= D !acqs (a)

iacqs (b) Δ
= D !iacqs (b)

pacqs (a) Δ
= D !pacqs (a)

piacqs (b) Δ
= D !piacqs (b)

151

APPENDIX A. TLA+ Specifications

pastAcqs (a) Δ
= D !pastAcqs (a)

pastIAcqs (b) Δ
= D !pastIAcqs (b)

monitoredBy (b) Δ
= actors [b] .monitored

appearsMonitoredBy (a) Δ
= snapshots [a] .monitored

BusyActors Δ
= D !BusyActors

IdleActors Δ
= D !IdleActors

Blocked Δ
= D !Blocked

Unblocked Δ
= D !Unblocked

HaltedActors Δ
= {a ∈ Actors : actors [a] .status = “halted”}

AppearsHalted Δ
= {a ∈ Snapshots : snapshots [a] .status = “halted”}

StickyActors Δ
= {a ∈ Actors : actors [a] .isSticky}

AppearsSticky Δ
= {a ∈ Snapshots : snapshots [a] .isSticky}

TRANSITIONS

Idle (a) Δ
= D !Idle (a)

Deactivate (a, b) Δ
= D !Deactivate (a, b)

Send (a, b, m) Δ
= D !Send (a, b, m)

Receive (a, m) Δ
= D !Receive (a, m)

Snapshot (a) Δ
= D !Snapshot (a)

Spawn (a, b, state) Δ
= D !Spawn (a, b, state)

Halt (a) Δ
=

∧ actors′ = [actors except ! [a] .status = “halted”] Mark the actor as halted.

∧ unchanged ⟨msgs, snapshots⟩

Monitor (a, b) Δ
=

∧ actors′ = [actors except ! [a] .monitored = @ ∪ {b}] Add b to the monitored set.

∧ unchanged ⟨msgs, snapshots⟩

Notify (a, b) Δ
=

∧ actors′ = [actors except Mark the monitor as busy and remove b from the monitored set.

! [a] .status = “busy”, ! [a] .monitored = @ \ {b}]
∧ unchanged ⟨msgs, snapshots⟩

Unmonitor (a, b) Δ
=

∧ actors′ = [actors except ! [a] .monitored = @ \ {b}] Remove b from the monitored set.

152

APPENDIX A. TLA+ Specifications

∧ unchanged ⟨msgs, snapshots⟩

Register (a) Δ
=

∧ actors′ = [actors except ! [a] .isSticky = true]
∧ unchanged ⟨msgs, snapshots⟩

Wakeup (a) Δ
=

∧ actors′ = [actors except ! [a] .status = “busy”]
∧ unchanged ⟨msgs, snapshots⟩

Unregister (a) Δ
=

∧ actors′ = [actors except ! [a] .isSticky = false]
∧ unchanged ⟨msgs, snapshots⟩

Init Δ
=

InitialConfiguration (choose a ∈ ActorName : true, InitialActorState)

Next Δ
=

∨ ∃ a ∈ BusyActors : Idle (a)
∨ ∃ a ∈ BusyActors : ∃ b ∈ FreshActorName : Spawn (a, b, InitialActorState)
∨ ∃ a ∈ BusyActors : ∃ b ∈ acqs (a) : Deactivate (a, b)
∨ ∃ a ∈ BusyActors : ∃ b ∈ acqs (a) : ∃ refs ∈ subset acqs (a) :

Send (a, b, [target ↦→ b, refs ↦→ refs])
∨ ∃ a ∈ IdleActors : ∃m ∈ msgsTo (a) : Receive (a, m)
∨ ∃ a ∈ IdleActors ∪ BusyActors ∪ HaltedActors : Snapshot (a)

NEW: Halted actors can now take snapshots.

∨ ∃ a ∈ BusyActors : Halt (a)
∨ ∃ a ∈ BusyActors : ∃ b ∈ acqs (a) : Monitor (a, b)
∨ ∃ a ∈ IdleActors : ∃ b ∈ HaltedActors ∩monitoredBy (a) : Notify (a, b)
∨ ∃ a ∈ BusyActors : ∃ b ∈ monitoredBy (a) : Unmonitor (a, b)
∨ ∃ a ∈ BusyActors \ StickyActors : Register (a)
∨ ∃ a ∈ IdleActors ∩ StickyActors : Wakeup (a)
∨ ∃ a ∈ BusyActors ∩ StickyActors : Unregister (a)

Non-halted sticky actors and unblocked actors are not garbage. Non-halted actors that are potentially reachable by
non-garbage are not garbage. Non-halted actors that monitor actors that can halt or have halted are not garbage.

153

APPENDIX A. TLA+ Specifications

PotentiallyUnblocked Δ
=

choose S ∈ subset Actors :
∧ (StickyActors ∪ Unblocked) \HaltedActors ⊆ S
∧ ∀a ∈ Actors, b ∈ Actors \HaltedActors :
∧ (a ∈ S ∩ piacqs (b) =⇒ b ∈ S)
∧ (a ∈ (S ∪ HaltedActors) ∩monitoredBy (b) =⇒ b ∈ S)

Quiescent Δ
= Actors \PotentiallyUnblocked

AppearsUnblocked Δ
= D !AppearsUnblocked

apparentIAcqs (b) Δ
= D !apparentIAcqs (b)

AppearsClosed Δ
= D !AppearsClosed ∩
{b ∈ Snapshots : appearsMonitoredBy (b) ⊆ Snapshots}

Each clause in this definition corresponds to one in PotentiallyUnblocked—with one addition: if an actor a has poten-
tial inverse acquaintances ormonitored actors that have not taken a snapshot, then a should bemarked as potentially
unblocked for safety.

AppearsPotentiallyUnblocked Δ
=

choose S ∈ subset Snapshots :
∧ Snapshots \ (AppearsClosed ∪ AppearsHalted) ⊆ S
∧ (AppearsSticky ∪ AppearsUnblocked) \AppearsHalted ⊆ S
∧ ∀a ∈ Snapshots, b ∈ Snapshots \AppearsHalted :
∧ (a ∈ S ∩ apparentIAcqs (b) =⇒ b ∈ S)
∧ (a ∈ (S ∪ AppearsHalted) ∩ appearsMonitoredBy (b) =⇒ b ∈ S)

AppearsQuiescent Δ
= Snapshots \AppearsPotentiallyUnblocked

SnapshotUpToDate (a) Δ
= D !SnapshotUpToDate (a)

RecentEnough (a, b) Δ
= D !RecentEnough (a, b)

SnapshotsInsufficient Δ
=

choose S ∈ subset Actors : ∀a ∈ Actors :
∧ (¬SnapshotUpToDate (a) =⇒ a ∈ S)
∧ ∀ b ∈ Actors \HaltedActors :
∧ (a ∈ pastIAcqs (b) ∧ ¬RecentEnough (a, b) =⇒ b ∈ S)
∧ (a ∈ S ∧ a ∈ piacqs (b) =⇒ b ∈ S)
∧ (a ∈ S ∧ a ∈ monitoredBy (b) =⇒ b ∈ S) NEW

154

APPENDIX A. TLA+ Specifications

SnapshotsSufficient Δ
= Actors \ SnapshotsInsufficient

Spec Δ
= (Quiescent ∩ SnapshotsSufficient) = AppearsQuiescent

TEST CASES: These invariants do not hold because garbage can be detected.

This invariant fails, showing that the set of quiescent actors is nonempty.

GarbageExists Δ
= ¬(Quiescent = {})

This invariant fails, showing that quiescence can be detected and that it is possible to obtain a sufficient set of
snapshots.

GarbageIsDetected Δ
= ¬(AppearsQuiescent = {})

This invariant fails, showing that quiescent actors can have halted inverse acquaintances.

HaltedGarbageIsDetected Δ
=

¬(∃ a, b ∈ Actors : a ≠ b ∧ a ∈ HaltedActors ∧ b ∈ AppearsQuiescent ∧
a ∈ iacqs (b))

The previous soundness property no longer holds because actors can now become busy by receiving signals from
halted actors or messages from external actors.

OldSoundness Δ
= D !AppearsQuiescent ⊆ Quiescent

The previous completeness property no longer holds because snapshots frommonitored actors need to be up to date.

OldCompleteness Δ
= (Quiescent ∩ D !SnapshotsSufficient) ⊆ AppearsQuiescent

A.6 The Exile Model

module Exile
This model extends the Monitors model with dropped messages and faulty nodes.

extends Common, Integers, FiniteSets, Bags, TLC

Every node has a unique ID and every actor is located at some node. Every pair of nodes has an ingress actor that
tracks when messages are dropped and when messages arrive at a node. Ingress actors can take snapshots. There is
also a temporary holding area for messages that have been dropped but whose recipient has not yet learned of the
drop.

constant NodeID
variable location, ingress, ingressSnapshots, droppedMsgs

155

APPENDIX A. TLA+ Specifications

D Δ
= instance Dynamic

M Δ
= instance Monitors

We add two fields to every message. origin indicates the node that produced the message and admitted indicates
whether the message was admitted into the destination node by the ingress actor. All messages between actors on
distinct nodes must be admitted before they can be received by the destination actor. Messages between actors on
the same node are admitted by default.

Message Δ
= [

origin : NodeID,

admitted : boolean ,

target : ActorName,
refs : subset ActorName

]

INITIALIZATION AND BASIC INVARIANTS

ActorState Δ
= M !ActorState

IngressState Δ
= [

shunned : boolean ,

admittedMsgs : [ActorName → Nat],
admittedRefs : [ActorName × ActorName → Nat]

]

The following invariant specifies the type of every variable in the configuration. It also asserts that every actor, once
spawned, has a location; and every message in droppedMsgs must have first been admitted.

TypeOK Δ
=

∧ actors ∈ [ActorName → ActorState ∪ {null }]
∧ snapshots ∈ [ActorName → ActorState ∪ {null }]
∧ BagToSet (msgs) ⊆ Message
∧ BagToSet (droppedMsgs) ⊆ Message
∧ location ∈ [ActorName → NodeID ∪ {null }] NEW

∧ ingress ∈ [NodeID × NodeID → IngressState] NEW

∧ ingressSnapshots ∈ [NodeID × NodeID → IngressState] NEW

∧ ∀a ∈ Actors : location [a] ≠ null
∧ ∀m ∈ BagToSet (droppedMsgs) : m .admitted

InitialActorState Δ
= M !InitialActorState

156

APPENDIX A. TLA+ Specifications

InitialIngressState Δ
= [

shunned ↦→ false,
admittedMsgs ↦→ [a ∈ ActorName ↦→ 0],
admittedRefs ↦→ [a, b ∈ ActorName ↦→ 0]

]

InitialConfiguration (initialActor , node, actorState) Δ
=

∧M !InitialConfiguration (initialActor , actorState)
∧ ingress = [N 1, N 2 ∈ NodeID ↦→ InitialIngressState]
∧ ingressSnapshots = [N 1, N 2 ∈ NodeID ↦→ InitialIngressState]
∧ location = (initialActor :> node)@@ [a ∈ ActorName ↦→ null]
∧ droppedMsgs = EmptyBag

DEFINITIONS

A message is admissible if it is not already admitted and the origin node is not shunned by the destination node.

AdmissibleMsgs Δ
= {m ∈ BagToSet (msgs) :

¬m .admitted ∧ ¬ingress [m .origin, location [m .target]] .shunned }
AdmittedMsgs Δ

= {m ∈ BagToSet (msgs) : m .admitted }

Because inadmissible messages can never be delivered, we update the definition of msgsTo to exclude them. This
causes several other definitions below to change in subtle ways. For example, an actor a is potentially acquainted
with b if all there is an inadmissible message to a containing a reference to b.

msgsTo (a) Δ
= {m ∈ M !msgsTo (a) : m .admitted ∨m ∈ AdmissibleMsgs}

acqs (a) Δ
= M !acqs (a)

iacqs (b) Δ
= M !iacqs (b)

pacqs (a) Δ
= {b ∈ ActorName : b ∈ acqs (a) ∨ ∃m ∈ msgsTo (a) : b ∈ m .refs}

piacqs (b) Δ
= {a ∈ Actors : b ∈ pacqs (a)}

pastAcqs (a) Δ
= M !pastAcqs (a)

pastIAcqs (b) Δ
= M !pastIAcqs (b)

monitoredBy (b) Δ
= M !monitoredBy (b)

appearsMonitoredBy (b) Δ
= M !appearsMonitoredBy (b)

admittedMsgsTo (a) Δ
= {m ∈ msgsTo (a) : m .admitted }

Below, an actor can be blocked if all messages to it are inadmissible.

BusyActors Δ
= M !BusyActors

IdleActors Δ
= M !IdleActors

157

APPENDIX A. TLA+ Specifications

Blocked Δ
= {a ∈ IdleActors : msgsTo (a) = {}}

Unblocked Δ
= Actors \Blocked

HaltedActors Δ
= M !HaltedActors

AppearsHalted Δ
= M !AppearsHalted

StickyActors Δ
= M !StickyActors

AppearsSticky Δ
= M !AppearsSticky

ShunnedBy (N 2) Δ
= {N 1 ∈ NodeID : ingress [N 1, N 2] .shunned }

ShunnableBy (N 1) Δ
= (NodeID \ {N 1}) \ ShunnedBy (N 1)

NeitherShuns (N 1) Δ
= {N 2 ∈ NodeID : ¬ingress [N 1, N 2] .shunned ∧

¬ingress [N 2, N 1] .shunned }

The exiled nodes are the largest nontrivial faction where every non-exiled node has shunned every exiled node.
Likewise, a faction of nodes G is apparently exiled if every node outside of G has taken an ingress snapshot in which
every node of G is shunned.

ExiledNodes Δ
=

LargestSubset (NodeID, lambda G :
∧G ≠ NodeID
∧ ∀N 1 ∈ G, N 2 ∈ NodeID \G : ingress [N 1, N 2] .shunned

)
ApparentlyExiledNodes Δ

=

LargestSubset (NodeID, lambda G :
∧G ≠ NodeID
∧ ∀N 1 ∈ G, N 2 ∈ NodeID \G : ingressSnapshots [N 1, N 2] .shunned

)
NonExiledNodes Δ

= NodeID \ExiledNodes
ExiledActors Δ

= {a ∈ Actors : location [a] ∈ ExiledNodes}
NonExiledActors Δ

= Actors \ExiledActors
FailedActors Δ

= HaltedActors ∪ ExiledActors
HealthyActors Δ

= Actors \FailedActors

ApparentlyNonExiledNodes Δ
= NodeID \ApparentlyExiledNodes

ApparentlyExiledActors Δ
= {a ∈ Actors : location [a] ∈ ApparentlyExiledNodes}

ApparentlyNonExiledActors Δ
= Actors \ApparentlyExiledActors

AppearsFailed Δ
= M !AppearsHalted ∪ ApparentlyExiledActors

AppearsHealthy Δ
= Actors \AppearsFailed

NonExiledSnapshots Δ
= Snapshots \ApparentlyExiledActors

158

APPENDIX A. TLA+ Specifications

droppedMsgsTo (a) Δ
= {m ∈ BagToSet (droppedMsgs) : m .target = a}

droppedPIAcqs (b) Δ
= {a ∈ Actors : ∃m ∈ droppedMsgsTo (a) : b ∈ m .refs}

TRANSITIONS

Idle (a) Δ
= M !Idle (a)

∧ unchanged ⟨location, ingress, ingressSnapshots, droppedMsgs⟩
Deactivate (a, b) Δ

= M !Deactivate (a, b)
∧ unchanged ⟨location, ingress, ingressSnapshots, droppedMsgs⟩

Send (a, b, m) Δ
= M !Send (a, b, m)

∧ unchanged ⟨location, ingress, ingressSnapshots, droppedMsgs⟩
Receive (a, m) Δ

= M !Receive (a, m)
∧ unchanged ⟨location, ingress, ingressSnapshots, droppedMsgs⟩

Snapshot (a) Δ
= M !Snapshot (a)

∧ unchanged ⟨location, ingress, ingressSnapshots, droppedMsgs⟩
Halt (a) Δ

= M !Halt (a)
∧ unchanged ⟨location, ingress, ingressSnapshots, droppedMsgs⟩

Monitor (a, b) Δ
= M !Monitor (a, b)

∧ unchanged ⟨location, ingress, ingressSnapshots, droppedMsgs⟩
Unmonitor (a, b) Δ

= M !Unmonitor (a, b)
∧ unchanged ⟨location, ingress, ingressSnapshots, droppedMsgs⟩

Notify (a, b) Δ
= M !Notify (a, b)

∧ unchanged ⟨location, ingress, ingressSnapshots, droppedMsgs⟩
Register (a) Δ

= M !Register (a)
∧ unchanged ⟨location, ingress, ingressSnapshots, droppedMsgs⟩

Wakeup (a) Δ
= M !Wakeup (a)

∧ unchanged ⟨location, ingress, ingressSnapshots, droppedMsgs⟩
Unregister (a) Δ

= M !Unregister (a)
∧ unchanged ⟨location, ingress, ingressSnapshots, droppedMsgs⟩

Spawn (a, b, state, N) Δ
=

∧M !Spawn (a, b, state)
∧ location′ = [location except ! [b] = N]
∧ unchanged ⟨msgs, ingress, ingressSnapshots, droppedMsgs⟩

Admit (m) Δ
=

let a Δ
= m .target

159

APPENDIX A. TLA+ Specifications

N 1 Δ
= m .origin

N 2 Δ
= location [a]

B Δ
= [⟨b, c⟩ ∈ {a} ×m .refs ↦→ 1]

in
∧ ingress′ = [ingress except ! [N 1, N 2] .admittedMsgs [a] = @ + 1,

! [N 1, N 2] .admittedRefs = @ ++ B]
∧msgs′ = replace (msgs, m, [m except ! .admitted = true])
∧ unchanged ⟨actors, snapshots, ingressSnapshots, location, droppedMsgs⟩

Dropped messages are admitted (if necessary) by the recipient ingress actor and then added to the droppedMsgs bag.

Drop (m) Δ
=

∧ if ¬m .admitted then
let a Δ

= m .target
N 1 Δ

= m .origin
N 2 Δ

= location [a]
B Δ

= [⟨b, c⟩ ∈ {a} ×m .refs ↦→ 1]
in
ingress′ = [ingress except ! [N 1, N 2] .admittedMsgs [a] = @ + 1,

! [N 1, N 2] .admittedRefs = @ ++ B]
else unchanged ⟨ingress⟩

∧msgs′ = remove (msgs, m)
∧ droppedMsgs′ = put (droppedMsgs, [m except ! .admitted = true])
∧ unchanged ⟨actors, snapshots, ingressSnapshots, location⟩

Some time after a message has been dropped, the recipient actor’s local state is updated.

DetectDropped (a, m) Δ
=

∧ droppedMsgs′ = remove (droppedMsgs, m)
∧ actors′ = [actors except ! [a] .received = @ + 1,

! [a] .deactivated = @ ++ [c ∈ m .refs ↦→ 1]]
∧ unchanged ⟨msgs, snapshots, ingress, ingressSnapshots, location⟩

When N2 shuns N1, the ingress actor at N2 is updated. If N1 is now exiled, we mark the actors as "exiled" to prevent
them from taking snapshots.

Shun (N 1, N 2) Δ
=

∧ ingress′ = [ingress except ! [N 1, N 2] .shunned = true]
∧ unchanged ⟨actors, msgs, snapshots, ingressSnapshots, location, droppedMsgs⟩

160

APPENDIX A. TLA+ Specifications

To reduce the model checking state space, the Shun rule can be replaced with the following Exile rule. This is safe
because, for any execution in which a faction G1 all shuns another faction G2, there is an equivalent execution in
which all Shun events happen successively.

Exile (G1, G2) Δ
=

∧ ingress′ =
[N 1 ∈ G1, N 2 ∈ G2 ↦→ [ingress [N 1, N 2] except ! .shunned = true]]@@ ingress

∧ unchanged ⟨actors, msgs, snapshots, ingressSnapshots, location, droppedMsgs⟩

Ingress actors can record snapshots.

IngressSnapshot (N 1, N 2) Δ
=

∧ ingressSnapshots′ = [ingressSnapshots except ! [N 1, N 2] = ingress [N 1, N 2]]
∧ unchanged ⟨actors, msgs, snapshots, ingress, location, droppedMsgs⟩

Init Δ
= InitialConfiguration (

choose a ∈ ActorName : true, An arbitrary name for the initial actor.

choose n ∈ NodeID : true, An arbitrary location for the actor.

InitialActorState The initial actor’s state.

)

Several transition rules have been updated to account for locations. In addition, every rule is modified so that exiled
actors no longer take actions.

Next Δ
=

∨ ∃ a ∈ BusyActors \ExiledActors : Idle (a)
∨ ∃ a ∈ BusyActors \ExiledActors : ∃ b ∈ FreshActorName :
∃N ∈ NeitherShuns (location [a]) : Spawn (a, b, InitialActorState, N)

UPDATE: Actors are spawned onto a specific (non-shunned) node.

∨ ∃ a ∈ BusyActors \ExiledActors : ∃ b ∈ acqs (a) : Deactivate (a, b)
∨ ∃ a ∈ BusyActors \ExiledActors : ∃ b ∈ acqs (a) : ∃ refs ∈ subset acqs (a) :

Send (a, b, [origin ↦→ location [a], admitted ↦→ location [b] = location [a],
target ↦→ b, refs ↦→ refs])

UPDATE: Messages are tagged with node locations.

∨ ∃ a ∈ IdleActors \ExiledActors : ∃m ∈ admittedMsgsTo (a) : Receive (a, m)
∨ ∃ a ∈ Actors \ExiledActors : Snapshot (a)
∨ ∃ a ∈ BusyActors \ExiledActors : Halt (a)
∨ ∃ a ∈ BusyActors \ExiledActors : ∃ b ∈ acqs (a) : Monitor (a, b)
∨ ∃ a ∈ IdleActors \ExiledActors : ∃ b ∈ FailedActors ∩monitoredBy (a) :

161

APPENDIX A. TLA+ Specifications

Notify (a, b)
UPDATE: Actors are notified when monitored actors are exiled.

∨ ∃ a ∈ BusyActors \ExiledActors : ∃ b ∈ monitoredBy (a) : Unmonitor (a, b)
∨ ∃ a ∈ (BusyActors \ StickyActors) \ExiledActors : Register (a)
∨ ∃ a ∈ (IdleActors ∩ StickyActors) \ExiledActors : Wakeup (a)
∨ ∃ a ∈ (BusyActors ∩ StickyActors) \ExiledActors : Unregister (a)
∨ ∃m ∈ AdmissibleMsgs : location [m .target] ∉ ExiledNodes ∧ Admit (m) NEW

∨ ∃m ∈ AdmissibleMsgs ∪ AdmittedMsgs : location [m .target] ∉ ExiledNodes ∧ Drop (m)
NEW

∨ ∃ a ∈ IdleActors \ExiledActors : ∃m ∈ droppedMsgsTo (a) :
DetectDropped (m .target, m) NEW

∨ ∃N 1 ∈ NodeID : ∃N 2 ∈ NonExiledNodes :
ingress [N 1, N 2] ≠ ingressSnapshots [N 1, N 2] ∧ IngressSnapshot (N 1, N 2) NEW

To reduce the TLA+ search space, ingress actors do not take snapshots if

their state has not changed.

∨ ∃N 2 ∈ NonExiledNodes : ∃N 1 ∈ ShunnableBy (N 2) : Shun (N 1, N 2) NEW

ACTUAL GARBAGE

An actor is potentially unblocked if it is busy or can become busy. (Halted and exiled actors automatically fail this
definition.) Similarly, an actor is potentially unblocked up-to-a-fault if it is busy or it can become busy in a non-faulty
extension of this execution.

isPotentiallyUnblockedUpToAFault (S) Δ
=

∧ StickyActors \FailedActors ⊆ S
∧ Unblocked \FailedActors ⊆ S
∧ ∀a ∈ S , b ∈ HealthyActors :

a ∈ piacqs (b) =⇒ b ∈ S
∧ ∀a ∈ S ∪ FailedActors, b ∈ HealthyActors :

a ∈ monitoredBy (b) =⇒ b ∈ S
NEW: An actor is not garbage if it monitors an exiled actor.

An actor is potentially unblocked if it is potentially unblocked up-to-a-fault or it monitors any remote actor. This is
because remote actors can always become exiled, causing the monitoring actor to be notified.

isPotentiallyUnblocked (S) Δ
=

∧ isPotentiallyUnblockedUpToAFault (S)
∧ ∀a ∈ Actors, b ∈ HealthyActors :

162

APPENDIX A. TLA+ Specifications

∧ (a ∈ monitoredBy (b) ∧ location [a] ≠ location [b] =⇒ b ∈ S)

An actor is quiescent if it is not potentially unblocked. Likewise for quiescence up-to-a-fault.

PotentiallyUnblockedUpToAFault Δ
=

choose S ∈ subset HealthyActors : isPotentiallyUnblockedUpToAFault (S)
QuiescentUpToAFault Δ

= Actors \PotentiallyUnblockedUpToAFault

PotentiallyUnblocked Δ
=

choose S ∈ subset HealthyActors : isPotentiallyUnblocked (S)
Quiescent Δ

= Actors \PotentiallyUnblocked

Both definitions characterize a subset of the idle actors. The difference between the definitions is that quiescence
up-to-a-fault is only a stable property in non-faulty executions.

QuiescentImpliesIdle Δ
= Quiescent ⊆ (IdleActors ∪ FailedActors)

QuiescentUpToAFaultImpliesIdle Δ
= QuiescentUpToAFault ⊆ (IdleActors ∪ FailedActors)

APPARENT GARBAGE

The effective created count is the sum of (a) the created counts recorded by non-exiled actors and (b) the created
counts recorded by ingress actors for exiled nodes.

created (a, b) Δ
=

sum ([c ∈ NonExiledSnapshots ↦→ snapshots [c] .created [a, b]]) +
sum ([N 1 ∈ ApparentlyExiledNodes, N 2 ∈ NodeID \ApparentlyExiledNodes ↦→

ingressSnapshots [N 1, N 2] .admittedRefs [a, b]])

deactivated (a, b) Δ
= D !deactivated (a, b)

Once an actor a is exiled, the number of messages that a sent effectively to some b is equal to the number of messages
admitted by the ingress actor at b’s node. Thus the effective total send count for b is the sum of the send counts from
non-exiled actors and the number of messages for b that entered the ingress actor from apparently exiled nodes.
Note that dropped messages to b are implicitly included in the sum.

sent (b) Δ
=

sum ([a ∈ NonExiledSnapshots ↦→ snapshots [a] .sent [b]]) +
sum ([N 1 ∈ ApparentlyExiledNodes ↦→ ingressSnapshots [N 1, location [b]] .admittedMsgs [b]])

received (b) Δ
= D !received (b)

Hereto inverse acquaintances now incorporate ingress snapshot information. Once an actor appears exiled, it is no
longer considered a hereto inverse acquaintance.

heretoIAcqs (c) Δ
= {b ∈ Actors : created (b, c) > 0}

163

APPENDIX A. TLA+ Specifications

apparentIAcqs (c) Δ
= {b ∈ Actors : created (b, c) > deactivated (b, c)}

AppearsIdle Δ
= {a ∈ NonExiledSnapshots : snapshots [a] .status = “idle”}

AppearsClosed Δ
= {b ∈ NonExiledSnapshots :

∧ heretoIAcqs (b) ⊆ Snapshots ∪ ApparentlyExiledActors
∧ appearsMonitoredBy (b) ⊆ Snapshots ∪ ApparentlyExiledActors}

AppearsBlocked Δ
= {b ∈ NonExiledSnapshots ∩ AppearsIdle : sent (b) = received (b)}

AppearsUnblocked Δ
= NonExiledSnapshots \AppearsBlocked

appearsPotentiallyUnblockedUpToAFault (S) Δ
=

∧ Snapshots \ (AppearsClosed ∪ AppearsFailed) ⊆ S
∧ AppearsSticky \AppearsFailed ⊆ S

NEW: Exiled actors still appear potentially unblocked.

∧ AppearsUnblocked \AppearsFailed ⊆ S
∧ ∀a ∈ S , b ∈ Snapshots \AppearsFailed :

a ∈ apparentIAcqs (b) =⇒ b ∈ S
∧ ∀a ∈ S ∪ AppearsFailed , b ∈ Snapshots \AppearsFailed :

a ∈ appearsMonitoredBy (b) =⇒ b ∈ S
NEW: An actor is not garbage if it monitors an exiled actor.

appearsPotentiallyUnblocked (S) Δ
=

∧ appearsPotentiallyUnblockedUpToAFault (S)
∧ ∀a ∈ Actors, b ∈ Snapshots \AppearsFailed :
∧ (a ∈ appearsMonitoredBy (b) ∧ location [a] ≠ location [b] =⇒ b ∈ S)

NEW: Actors that monitor remote actors are not garbage.

AppearsPotentiallyUnblockedUpToAFault Δ
=

choose S ∈ subset Snapshots \AppearsFailed :
appearsPotentiallyUnblockedUpToAFault (S)

AppearsQuiescentUpToAFault Δ
=

Snapshots \AppearsPotentiallyUnblockedUpToAFault

AppearsPotentiallyUnblocked Δ
=

choose S ∈ subset Snapshots \AppearsFailed :
appearsPotentiallyUnblocked (S)

AppearsQuiescent Δ
=

Snapshots \AppearsPotentiallyUnblocked

164

APPENDIX A. TLA+ Specifications

SOUNDNESS AND COMPLETENESS PROPERTIES

Exiled actors may need to appear exiled in order for all quiescent garbage to be detected.

SnapshotUpToDate (a) Δ
=

if a ∈ ExiledActors then a ∈ ApparentlyExiledActors else
if a ∈ HaltedActors then a ∈ AppearsHalted else M !SnapshotUpToDate (a)

RecentEnough (a, b) Δ
=

if a ∈ ExiledActors then a ∈ ApparentlyExiledActors else
if a ∈ HaltedActors then a ∈ AppearsHalted else M !RecentEnough (a, b)

BeingExiled (a) Δ
=

∃N ∈ NonExiledNodes :
location [a] ∈ ShunnedBy (N) ∧ location [a] ∉ ExiledNodes

SnapshotsInsufficient Δ
=

choose S ∈ subset Actors :
∧ ∀N 1, N 2 ∈ ApparentlyNonExiledNodes : N 1 ∈ ShunnedBy (N 2) =⇒

Actors ⊆ S
NEW: Shunning creates garbage actors that might not be detected

until those nodes are apparently exiled.

∧ ∀ b ∈ Actors :
∧ ¬SnapshotUpToDate (b) =⇒ b ∈ S
∧ b ∈ HealthyActors ∧ droppedMsgsTo (b) ≠ {} =⇒ b ∈ S
NEW: Actors may need to be notified about dropped references.

∧ ∀a ∈ Actors :
∧ a ∈ pastIAcqs (b) ∧ ¬RecentEnough (a, b) =⇒ b ∈ S
∧ a ∈ S ∧ a ∈ piacqs (b) =⇒ b ∈ S
∧ a ∈ S ∧ a ∈ monitoredBy (b) =⇒ b ∈ S
∧ a ∈ S ∧ a ∈ droppedPIAcqs (b) =⇒ b ∈ S
NEW: Recipients of dropped messages containing references to b

may need to have sufficient snapshots.

SnapshotsSufficient Δ
= Actors \ SnapshotsInsufficient

The specification states that a non-exiled actor appears quiescent if and only if it is actually quiescent and there are
sufficient snapshots to diagnose quiescence.

Spec Δ
=

∧ AppearsQuiescent ⊆ Quiescent
∧Quiescent ⊆ AppearsQuiescent ∪ SnapshotsInsufficient ∪ ExiledActors

165

APPENDIX A. TLA+ Specifications

For quiescence up-to-a-fault, the simple specification above is not sufficient. This is because an actor that is quiescent
up-to-a-fault can become busy if it monitors a remote actor that became exiled.

SpecUpToAFault Δ
=

(∀a ∈ AppearsQuiescentUpToAFault : ∀ b ∈ appearsMonitoredBy (a) : b ∉ ExiledActors)
=⇒
∧ AppearsQuiescentUpToAFault ⊆ QuiescentUpToAFault
∧QuiescentUpToAFault ⊆

AppearsQuiescentUpToAFault ∪ SnapshotsInsufficient ∪ ExiledActors

TEST CASES: These invariants do not hold because garbage can be detected.

ActorsCanBeSpawned Δ
= Cardinality (Actors) < 4

MessagesCanBeReceived Δ
= ∀a ∈ Actors : actors [a] .received = 0

ActorsCanBeExiled Δ
= ∀a ∈ Actors : a ∉ ExiledActors

SelfMessagesCanBeReceived Δ
=

∀a ∈ Actors : actors [a] .received = 0 ∨ Cardinality (Actors) > 1

This invariant fails, showing that the set of quiescent actors is nonempty.

GarbageExists Δ
= Quiescent = {}

HealthyGarbageExists Δ
= Quiescent ∩ HealthyActors = {}

GarbageUpToAFaultExists Δ
= QuiescentUpToAFault = {}

HealthyGarbageUpToAFaultExists Δ
= QuiescentUpToAFault ∩ HealthyActors = {}

This invariant fails, showing that quiescence can be detected and that it is possible to obtain a sufficient set of
snapshots.

GarbageIsDetected Δ
= AppearsQuiescent = {}

HealthyGarbageIsDetected Δ
= AppearsQuiescent \AppearsHalted = {}

GarbageIsDetectedUpToAFault Δ
= AppearsQuiescentUpToAFault = {}

HealthyGarbageIsDetectedUpToAFault Δ
= AppearsQuiescentUpToAFault \AppearsHalted = {}

DistinctGarbageUpToAFault Δ
= AppearsQuiescentUpToAFault = AppearsQuiescent

This invariant fails, showing that quiescent actors can have halted inverse acquaintances.

ExiledGarbageIsDetected Δ
=

¬(∃ a, b ∈ Actors : a ≠ b ∧ a ∈ ExiledActors ∧ b ∈ AppearsQuiescent ∧
a ∈ iacqs (b))

This invariant fails, showing that "quiescence up to a fault" is a strict superset of quiescence.

166

APPENDIX A. TLA+ Specifications

GarbageUpToAFault Δ
= AppearsQuiescentUpToAFault ⊆ AppearsQuiescent

A.7 The Shadows Model

module Shadows
extends Common, Integers, FiniteSets, Bags, TLC

D Δ
= instance Dynamic

M Δ
= instance Monitors

SHADOW GRAPHS

A Shadow is a node in the shadow graph. Each Shadow in the graph corresponds to an actor that has taken a
snapshot or is referenced in another actor’s snapshot.

•interned indicates whether this actor has taken a snapshot. If
•interned is FALSE, the values of sticky and status are meaningless.
•sticky indicates whether the actor was sticky in its latest snapshot.
•status indicates the status of the actor in its latest snapshot.
•undelivered is the number of messages that appear sent but not received.
•references is the number of references that appear created but not deactivated.
•watchers is the set of actors that appear to monitor this actor.

Shadow Δ
= [

interned : boolean ,

sticky : boolean ,

status : {“idle”, “busy”, “halted”},
undelivered : Int,
references : [ActorName → Int],
watchers : subset ActorName

]

Shadow graphs are represented here as an indexed collection of shadows.

ShadowGraph Δ
= [ActorName → Shadow ∪ {null }]

undelivered (b) Δ
= D !sent (b) − D !received (b)

references (a, b) Δ
= D !created (a, b) − D !deactivated (a, b)

167

APPENDIX A. TLA+ Specifications

watches (a, b) Δ
= a ∈ Snapshots ∧ b ∈ snapshots [a] .monitored

This is the domain of the shadow graph. An actor is in the shadow graph if it occurs in a snapshot.

Shadows Δ
=

{c ∈ ActorName :
∨ c ∈ Snapshots
∨ ∃ a ∈ Snapshots : ∃ b ∈ ActorName : snapshots [a] .created [b, c] > 0
∨ ∃ a ∈ Snapshots : ∃ b ∈ ActorName : snapshots [a] .created [c, b] > 0
∨ ∃ a ∈ Snapshots : snapshots [a] .deactivated [c] > 0
∨ ∃ a ∈ Snapshots : snapshots [a] .sent [c] > 0
∨ ∃ a ∈ Snapshots : c ∈ snapshots [a] .monitored

}

This is the shadow graph representation of the collage stored in snapshots.

shadows Δ
=

[b ∈ Shadows ↦→
[

interned ↦→ b ∈ Snapshots,
sticky ↦→ if b ∈ Snapshots then snapshots [b] .isSticky else false,
status ↦→ if b ∈ Snapshots then snapshots [b] .status else “idle”,

undelivered ↦→ undelivered (b),
references ↦→ [c ∈ ActorName ↦→ references (b, c)],
watchers ↦→ {a ∈ ActorName : watches (a, b)}

]
]

AppearsFaulty (G) Δ
=

{a ∈ domain G : G [a] .status = “halted”}

PseudoRoots (G) Δ
=

{a ∈ domain G \AppearsFaulty (G) :
¬G [a] .interned ∨G [a] .sticky ∨G [a] .status = “busy” ∨G [a] .undelivered ≠ 0 ∨
∃ b ∈ domain G : G [b] .status = “halted” ∧ a ∈ G [b] .watchers
}

acquaintances (G, a) Δ
=

{b ∈ domain G : G [a] .references [b] > 0}

watchers (G, a) Δ
= {b ∈ domain G : b ∈ G [a] .watchers}

168

APPENDIX A. TLA+ Specifications

In the shadow graph G, an actor is marked iff 0. It is a pseudo-root; 1. A potentially unblocked actor appears
acquainted with it; or 2. A potentially unblocked actor is monitored by it.

marked (G) Δ
=

choose S ∈ subset (domain G) \AppearsFaulty (G) :
∧ PseudoRoots (G) ⊆ S
∧ ∀a ∈ S :

acquaintances (G, a) \AppearsFaulty (G) ⊆ S
∧ ∀a ∈ S :

watchers (G, a) \AppearsFaulty (G) ⊆ S

unmarked (G) Δ
= (domain G) \marked (G)

MODEL

Alone, shadow graphs characterize the garbage in the Monitors model. To find garbage in the Exile model, we need
undo logs.

Init Δ
= M !Init

Next Δ
= M !Next

PROPERTIES

TypeOK Δ
= ∀a ∈ Shadows : shadows [a] ∈ Shadow

Spec Δ
= unmarked (shadows) = M !AppearsQuiescent

A.8 The UndoLogs Model

module UndoLogs
extends Common, Integers, FiniteSets, Bags, TLC

constant NodeID
variable location, ingress, ingressSnapshots, droppedMsgs

D Δ
= instance Dynamic

M Δ
= instance Monitors

E Δ
= instance Exile

169

APPENDIX A. TLA+ Specifications

S Δ
= instance Shadows

UNDO LOGS

An undo log for node N indicates how to recover from the exile of node N.

UndoLog Δ
= [

node : NodeID,

undeliverableMsgs : [ActorName → Int],
undeliverableRefs : [ActorName × ActorName → Int]

]

snapshotsFrom (N) Δ
= {a ∈ Snapshots : location [a] = N }

The number of messages sent to actor b by actors on node N, according to the collage.

sent (N , b) Δ
= sum ([a ∈ snapshotsFrom (N) ↦→ snapshots [a] .sent [b]])

The number of references owned by a pointing to b created by node N, according to the collage.

created (N , a, b) Δ
= sum ([c ∈ snapshotsFrom (N) ↦→ snapshots [c] .created [a, b]])

The number of messages sent to b originating from N1 that have been admitted to their destination, according to
the ingress actors’ snapshots.

admittedMsgs (N 1, b) Δ
=

let N 2 Δ
= location [b]in

if ⟨N 1, N 2⟩ ∈ domain ingressSnapshots then
ingressSnapshots [N 1, N 2] .admittedMsgs [b]

else 0

The number of references owned by a pointing to b created by N1 that have been admitted to their destination,
according to the ingress actors’ snapshots.

admittedRefs (N 1, b, c) Δ
=

let N 2 Δ
= location [b]in

if ⟨N 1, N 2⟩ ∈ domain ingressSnapshots then
ingressSnapshots [N 1, N 2] .admittedRefs [b, c]

else 0

The undo logs for each node N.

undo Δ
=

[N ∈ NodeID ↦→
[

170

APPENDIX A. TLA+ Specifications

node ↦→ N ,

undeliverableMsgs ↦→
[b ∈ ActorName ↦→

sent (N , b) − admittedMsgs (N , b)],
undeliverableRefs ↦→
[⟨b, c⟩ ∈ ActorName × ActorName ↦→

created (N , b, c) − admittedRefs (N , b, c)]
]

]

undeliverableMsgs Δ
=

[b ∈ ActorName ↦→
sum ([N ∈ E !ApparentlyExiledNodes ↦→ undo [N] .undeliverableMsgs [b]])
]

undeliverableRefs Δ
=

[⟨b, c⟩ ∈ ActorName × ActorName ↦→
sum ([N ∈ E !ApparentlyExiledNodes ↦→ undo [N] .undeliverableRefs [b, c]])
]

AmendedShadows Δ
=

{a ∈ ActorName :
∧ a ∈ S !Shadows
∧ (a ∉ E !ApparentlyExiledActors ∨ S !shadows [a] .watchers ≠ {})

}

The shadow graph, amended using finalized undo logs.

amendedShadows Δ
= [b ∈ AmendedShadows ↦→ [

interned ↦→ S !shadows [b] .interned ,
sticky ↦→ S !shadows [b] .sticky,
watchers ↦→ S !shadows [b] .watchers \E !ApparentlyExiledActors,
status ↦→ if b ∈ E !ApparentlyExiledActors then “halted” else S !shadows [b] .status,
undelivered ↦→ S !shadows [b] .undelivered − undeliverableMsgs [b],
references ↦→ [c ∈ ActorName ↦→ S !shadows [b] .references [c] − undeliverableRefs [b, c]]
]]

MODEL

171

APPENDIX A. TLA+ Specifications

Init Δ
= E !Init

Next Δ
= E !Next

PROPERTIES

TypeOK Δ
=

∧ undo ∈ [NodeID → UndoLog]
∧ ∀a ∈ AmendedShadows : amendedShadows [a] ∈ S !Shadow

Spec Δ
=

S !unmarked (amendedShadows) \E !ApparentlyExiledActors =

E !AppearsQuiescent \E !ApparentlyExiledActors

172

	CHAPTER 1 INTRODUCTION
	CHAPTER 2 THE ACTOR MODEL
	Actors
	Actor Garbage

	CHAPTER 3 RELATED WORK
	Fault Tolerance and Fault Recovery
	Acyclic GCs
	Cyclic GCs
	Snapshot-Based GCs
	Trace-Based GCs
	Collage-based GCs

	I Coordination-Free Actor GC
	CHAPTER 4 PROACTIVE REFERENCE LISTING
	Overview
	Reference Objects
	Message Counts and Snapshots

	Model
	Initial Configuration
	Standard Actor Operations
	Release Protocol
	Composition and Effects

	Basic Properties
	Garbage
	Chain Lemma

	CHAPTER 5 QUIESCENCE DETECTION
	Consistent and Finalized Snapshots
	Finalized sets
	Strongly finalized sets

	Maximal Finalized Subsets
	Chain Algorithm
	Heuristic algorithm

	Cooperative Garbage Collection
	Potentially finalized sets
	Summaries

	II Fault-Recovering Actor GC
	CHAPTER 6 FAULT MODEL
	Nodes
	Monitoring
	Romeo-and-Juliet Problems

	Sticky Actors and Timeouts
	Configurations and Executions
	Faulty Execution Paths
	Actor Garbage
	Deliverable Messages
	Potentially Unblocked Actors
	Weak Quiescence

	CHAPTER 7 FAULT-RECOVERING ACTOR GC
	The Collage-Based Approach
	Notation

	Static Topologies
	Model
	Apparent Quiescence

	Dynamic Topologies
	Model
	Detecting Garbage
	Contact Tracing
	Apparent Quiescence
	Soundness

	Sticky Actors and Monitoring
	Model
	Apparent Quiescence

	Dropped Messages and Exiled Nodes
	Model
	Detecting Quiescence

	Shadow Graphs and Undo Logs
	Shadow Graphs
	Undo Logs

	CHAPTER 8 IMPLEMENTATION
	Overview
	Diary Entries
	Performance Optimizations

	Shadow Graphs and Delta Graphs
	Ingress and Egress Actors

	CHAPTER 9 EVALUATION
	Savina Benchmarks
	Microbenchmarks
	Benchmarks
	Message Counts

	RandomWorkers: A Configurable GC Benchmark
	Bandwidth Usage

	CHAPTER 10 CONCLUSION
	REFERENCES
	APPENDIX A TLA+ SPECIFICATIONS
	The Fault Model
	Common Definitions
	The Static Model
	The Dynamic Model
	The Monitors Model
	The Exile Model
	The Shadows Model
	The UndoLogs Model

