
Ozone: Fully Out-of-Order
Choreographies

Marco Peressotti
@dplyukhin

Fabrizio MontesiDan Plyukhin

1

what is
choreographic
programming?

distributed model training

🧐
worker 1 server worker 2

job result 1

new job 1

job result 2

new job 2

2

distributed model training

🧐

what is
choreographic
programming?

3

???

choreography

projection

endpoint code

✅ provably deadlock-free
✅ no message type errors
✅ cleaner code4

but is it fast?

5

but is it fast?

6

but is it fast?
worker 1 server worker 2

job result 1

new job 1 job result 2

new job 2

7

but is it fast?
worker 1 server worker 2

job result 1

job result 2

😵💫
wasted
time!}

8

worker 1 server worker 2

swap the
order?

but is it fast?

job result 1

job result 2

wasted
time!}

9

worker 1 server worker 2

but is it fast?

job result 2

wasted
time! {

job result 1

10

but is it fast?

we need
out-of-order

processes!

11

but is it fast?

bind to a future

register a callback

12

easy!
1. patch the compiler

2. deploy to production

3. happy friday 🍸

13

🚨 CODE RED 🚨

this talk

futures + choreographies = 🐞 🐛 🦟

futures + choreographies + integrity keys = 📈 🤑 📈

17

what went wrong?

the content service generates tweets
the key service manages login info
the router forwards data
the worker calls the Twitter API

tweet
cre

ds

content
service router

key
service worker

tweet
creds

choreography

19

tweet
cre

ds

content
service router

key
service worker

tweet

creds

choreography

the content service generates tweets
the key service manages login info
the router forwards data
the worker calls the Twitter API

20

tweet
cre

ds

content
service router

key
service worker

tweet

creds

compiled
endpoint code

the content service generates tweets
the key service manages login info
the router forwards data
the worker calls the Twitter API

21

tweet
creds

content
service router

key
service worker

tweet

creds

compiled
endpoint code

the content service generates tweets
the key service manages login info
the router forwards data
the worker calls the Twitter API

22

tweet
cre

ds

content
service router

key
service worker

tweet

creds

compiled
endpoint code

the content service generates tweets
the key service manages login info
the router forwards data
the worker calls the Twitter API

23

the content service generates tweets
the key service manages login info
the worker calls the Twitter API

tweet
cre

ds

content
service router

key
service worker

tweet

creds

compiled
endpoint code 24

worker

tweet

creds

25

worker

tweet

creds

communication integrity
violation (CIV)

26

worker

(1, tweet)

(2, creds)

router
communication integrity

violation (CIV)

27

workerrouter
communication integrity

violation (CIV)

(1, tweet)

(2, creds)

28

worker

(1, tweet)

(2, creds)

router
communication integrity

violation (CIV)

29

big takeaway #1
You can prevent CIVs inside a choreography with

statically unique IDs!

but wait, there’s more!

30

but wait, there’s more!

billing shopping
cart

currency
exchange

user id cart total

total in USD

online shopping checkout

31

billing shopping
cart 1

currency
exchange

shopping
cart 2

marco

€ 5

dan

$1000

$ 1000
charge(dan, $1000)

dan

marco

32

billing shopping
cart 1

currency
exchange

shopping
cart 2

marco

€ 5

$ 6

dan

$1000

$ 1000
charge(dan, $1000)

charge(marco, $6)

marco

dan

✅
33

billing shopping
cart 1

currency
exchange

shopping
cart 2

marco

€ 5

$ 6

dan

$1000

$ 1000
charge(marco, $1000)

charge(dan, $6)

marco

dan

👎

34

billing shopping
cart 1

currency
exchange

shopping
cart 2

marco

€ 5

$ 6

dan

$1000

$ 1000
charge(dan, $1000)

charge(marco, $6)

marco

dan

✅
35

billing shopping
cart 1

currency
exchange

shopping
cart 2

marco

€ 5

$ 6

dan

$1000

$ 1000
charge(marco, $1000)

charge(dan, $6)

marco

dan

👎

36

billing shopping
cart 1

currency
exchange

shopping
cart 2

(T2, marco)

(T2, € 5)

(T2, $6)

(T1, dan)

(T1, $1000)

(T1, $1000)
charge(dan, $1000)

charge(marco, $6)

marco

dan

✅

37

big takeaway #2
You can prevent CIVs between choreographies with

dynamically unique session tokens!

38

formal model: session tokens without synchronization

proofs: deadlock-freedom, bisimulation,
communication integrity

performance: microbenchmarks, model serving

the paper
ECOOP 2024

39

conclusion

You can prevent CIVs inside a choreography
with statically unique IDs!

big takeaway #1

You can prevent CIVs between choreographies
with dynamically unique session tokens!

big takeaway #2

join us on zulip! read the paper!

40

