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???

choreography

projection

endpoint code

✅ provably deadlock-free 
✅ no message type errors 
✅ cleaner code4



but is it fast?
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worker 1 server worker 2

swap the 
order?
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worker 1 server worker 2

but is it fast?

job result 2

wasted 
time! {

job result 1
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but is it fast?

we need  
out-of-order 

processes!
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but is it fast?

bind to a future

register a callback
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easy!
1. patch the compiler 

2. deploy to production 

3. happy friday 🍸
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🚨 CODE RED 🚨





this talk

futures + choreographies = 🐞 🐛 🦟

futures + choreographies + integrity keys = 📈 🤑 📈
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what went wrong?



the content service generates tweets 
the key service manages login info 
the router forwards data 
the worker calls the Twitter API

tweet
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creds

choreography
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the content service generates tweets 
the key service manages login info 
the worker calls the Twitter API
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worker

tweet

creds
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worker

tweet

creds

communication integrity 
violation (CIV)
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workerrouter
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worker

(1, tweet)
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router
communication integrity 

violation (CIV)
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big takeaway #1
You can prevent CIVs inside a choreography with 

statically unique IDs!

but wait, there’s more!
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but wait, there’s more!

billing shopping 
cart

currency 
exchange

user id cart total

total in USD

online shopping checkout
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billing shopping 
cart 1

currency 
exchange

shopping 
cart 2

(T2, marco)

(T2, € 5)

(T2, $6)

(T1, dan)
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✅
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big takeaway #2
You can prevent CIVs between choreographies with 

dynamically unique session tokens!
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formal model: session tokens without synchronization 

proofs: deadlock-freedom, bisimulation, 
communication integrity 

performance: microbenchmarks, model serving

the paper
ECOOP 2024
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conclusion

You can prevent CIVs inside a choreography 
with statically unique IDs!

big takeaway #1

You can prevent CIVs between choreographies 
with dynamically unique session tokens!

big takeaway #2

join us on zulip! read the paper!
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