
CRGC: Fault-Recovering Actor Garbage Collection in Pekko

DAN PLYUKHIN, University of Southern Denmark, Denmark

GUL AGHA, University of Illinois Urbana-Champaign, USA

FABRIZIO MONTESI, University of Southern Denmark, Denmark

Actors are lightweight reactive processes that communicate by asynchronous message-passing. Actors address

common problems like concurrency control and fault tolerance, but resource management remains challenging:

in all four of the most popular actor frameworks (Pekko, Akka, Erlang, and Elixir) programmers must explicitly

kill actors to free up resources. To simplify resource management, researchers have devised actor garbage
collectors (actor GCs) that monitor the application and detect when actors are safe to kill. However, existing

actor GCs are impractical for distributed systems where the network is unreliable and nodes can fail. The

simplest actor GCs do not collect cyclic garbage, whereas more sophisticated actor GCs are not fault-recovering:
dropped messages and crashed nodes can cause actors to become garbage that never gets collected.

We present Conflict-free Replicated Garbage Collection (CRGC): the first fault-recovering cyclic actor GC.

In CRGC, actors and nodes record information locally and broadcast updates to the garbage collectors running

on each node. CRGC does not require locks, explicit memory barriers, or any assumptions about message

delivery order, except for reliable FIFO channels from actors to their local garbage collector. Moreover, CRGC

is simple: we concisely present its operational semantics, which has been formalized in TLA
+
, and prove both

soundness (non-garbage actors are never killed) and completeness (all garbage actors are eventually killed,

under reasonable assumptions). We also present a preliminary implementation in Apache Pekko and measure

its performance using two actor benchmark suites. Our results show the performance overhead of CRGC is

competitive with simpler approaches like weighted reference counting, while also being much more powerful.

CCS Concepts: • Software and its engineering→Garbage collection; •Computer systems organization
→ Cloud computing; • Computing methodologies→ Distributed algorithms.

Additional Key Words and Phrases: actors, actor model, fault tolerance, distributed systems, garbage collection

ACM Reference Format:
Dan Plyukhin, Gul Agha, and Fabrizio Montesi. 2025. CRGC: Fault-Recovering Actor Garbage Collection in

Pekko. Proc. ACM Program. Lang. 9, PLDI, Article 185 (June 2025), 25 pages. https://doi.org/10.1145/3729288

1 Introduction
Distributed applications manage pools of resources like containers, memory, and connections to

external APIs. In many such applications, resources are encapsulated within actors: lightweight
reactive processes that communicate by asynchronous message-passing [1, 2]. Actors protect

resources from unsafe concurrent access and guarantee that resources will be reclaimed when the

actor is killed. However, deciding when to kill actors is a hard problem.

Figure 1 shows a simplified resource management problem based on Hadoop YARN [47]. In the

figure, a manager actor (am) assigns work (startTask) to a worker actor (container) that encapsulates

Authors’ Contact Information: Dan Plyukhin, dplyukhin@imada.sdu.dk, University of Southern Denmark, Odense, Denmark;

Gul Agha, University of Illinois Urbana-Champaign, Urbana, IL, USA, agha@illinois.edu; Fabrizio Montesi, fmontesi@imada.

sdu.dk, University of Southern Denmark, Odense, Denmark.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2475-1421/2025/6-ART185

https://doi.org/10.1145/3729288

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 185. Publication date: June 2025.

HTTPS://ORCID.ORG/0009-0004-8712-7895
HTTPS://ORCID.ORG/0000-0002-0580-4206
HTTPS://ORCID.ORG/0000-0003-4666-901X
https://doi.org/10.1145/3729288
https://orcid.org/0009-0004-8712-7895
https://orcid.org/0000-0002-0580-4206
https://orcid.org/0000-0003-4666-901X
https://doi.org/10.1145/3729288


185:2 Dan Plyukhin, Gul Agha, and Fabrizio Montesi

am container

message

activation

startTask

hdfs

commit?

yes
commit

Fig. 1. A task commit protocol, based on Hadoop YARN [16].

a fixed set of CPU and memory resources. The worker completes the task and then asks am for

confirmation (commit?) before writing to the distributed storage service (hdfs). But what if the
worker does not receive a timely reply from its manager? There are two options:

(1) The worker could decide am’s node crashed, in which case the worker’s resources should be

reclaimed. But if am’s node hasn’t really crashed, killing the worker could cause a bug.

(2) The worker could wait for am indefinitely, but then the worker’s resources will never be

reclaimed.

As a compromise, the worker could passivate [10, 29, 34] by persisting itself to disk—but moving

actors between main memory and disk has a cost, and passivated actors still consume some

resources. To be efficient, programmers must write code that detects when actors are safe to

kill and anticipates all possible faults. Often this means reasoning about the global state of the

application and communicating with remote nodes; unsurprisingly, such code is prone to distributed

concurrency bugs [5, 26, 33].

Researchers have long since proposed actor garbage collectors (actor GCs) that automatically

detect when actors are safe to kill [13, 15, 21, 23, 36–38, 40, 45, 49, 51]. But existing actor GCs are not

fault-recovering: they will never reclaim container if am’s node crashes in Figure 1. Although there

are fault-recovering reference listing algorithms that could be applied to actors, these algorithms

do not collect cyclic garbage (for instance, when a manager and a worker actor have references to

one another) and the correctness of these algorithms is difficult to prove [32].

We present Conflict-free Replicated Garbage Collection (CRGC): the first fault-recovering cyclic

actor GC. Our work addresses the following key problems:

How can the GC collect garbage resulting from crashed nodes, if a crashed node cannot be distin-
guished from a slow one? We observe that two of the most popular actor frameworks—Akka [27]

and its open-source fork Pekko [3]—both use membership protocols to “exile” unresponsive nodes

from the cluster after enough time passes [28, 41]. In these frameworks, if am’s node is exiled

before am can send its reply, then the reply will never be delivered. We show actor GCs can use

information from membership protocols to safely recover after nodes have crashed—but one must

have a precise understanding of those membership protocols to navigate the edge cases that arise

in practice. For example, in both Akka and Pekko, a message from am can still be delivered after

am’s node is exiled if that message already reached its recipient’s mailbox. Informed by real-world

behavior, we develop a formal model for distributed actor systems with membership protocols,

and we formally characterize which actors are safe to kill in the model. We then use the model to

develop an operational semantics for CRGC.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 185. Publication date: June 2025.



CRGC: Fault-Recovering Actor Garbage Collection in Pekko 185:3

How does the GC know which actors are garbage? The classical approach is to request a local

snapshot from every actor in the application, imposing some form of synchronization to ensure

snapshots are consistent with one another [12]. Such an approach is not ideal in large computing

clusters, because one slow node can delay garbage collection for the rest of the cluster. In modern

actor GCs, the actors themselves choose how often to send local snapshots, while the garbage

collector scans the snapshots received so far and verifies if actors that “appear” to be garbage

are truly garbage [8, 13, 37, 38]. A key limitation of modern actor GCs is that actors exchange

certain “control” messages to maintain reference counts or reference listings, and the network must

deliver these messages reliably. In CRGC, we remove the need for control messages by storing extra

information in each actor’s local state. Our approach allows CRGC to easily recover from dropped

messages and to collect garbage without waiting for slow nodes, at the cost that acyclic garbage

actors must wait to be killed by their local garbage collector instead of collecting themselves.

How does the GC recover from dropped messages and exiled nodes? In practice, messages between

nodes always go through an “egress point” at the sending node to be serialized, and an “ingress

point” at the receiving node to be deserialized. Following Puaut [40], egress and ingress points

can be instrumented to track information about each message, allowing the runtime to infer when

messages have been dropped without requiring message re-transmission. While Puaut’s technique

can already be used to recover from dropped messages, our key insight is that ingress points also

integrate elegantly with membership protocols. Namely, after a node is exiled, the ingress points of

that node’s neighbors can be queried to form an “effective snapshot” of the node’s actors. We prove

that effective snapshots are sufficient for detecting all garbage ensuing from exiled nodes.

In summary, we make the following contributions.

(1) A fault-aware model for reasoning about actor garbage. Our model incorporates a high-level

membership protocol, based on that of Akka and Pekko. Nodes may crash, messages can be

dropped or reordered, and actors may halt and monitor one another for failure. We formalize

the model’s semantics with a TLA
+
specification, we define what it means for an actor to be

garbage in the model, and we prove that garbage actors never receive messages.
1

(2) A fault-recovering actor GC. We present CRGC and formalize its semantics with a TLA
+
specifi-

cation. We also prove that CRGC is sound (non-garbage actors are never collected) and complete

(all garbage actors are eventually collected) with respect to our model.

(3) An implementation of CRGC in Apache Pekko [3]. We present a preliminary Pekko frontend

for managed actors: actors whose lifetimes are managed by the runtime instead of by the

programmer.
2
Pekko has a large API that was not designed with actor GC in mind, so we report

some open problems related to usability that may interest the broader research community.

Our new frontend is agnostic about the underlying actor GC “engine”, and currently supports

preliminary implementations of CRGC and weighted reference counting [6, 52]. We evaluate

CRGC with custom versions of the Savina [19] and ChatApp [9] actor benchmark suites, and

find that CRGC has comparable performance overhead to weighted reference counting—despite

being much more powerful.
3

2 Related Work
Past approaches fit in three categories: Acyclic GCs, which cannot collect garbage actors that have

references to one another; Cyclic GCs, which can collect these actors but are not fault-recovering;

and Passivation, which is used for special kinds of actors that have infinite lifetimes.

1
Full proofs and TLA

+
specifications for this paper can be found at github.com/dplyukhin/crgc-spec.

2
The implementation can be found at github.com/dplyukhin/uigc-pekko.

3
The benchmarks can be found at github.com/dplyukhin/uigc-bench.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 185. Publication date: June 2025.

https://github.com/dplyukhin/crgc-spec
https://github.com/dplyukhin/uigc-pekko
https://github.com/dplyukhin/uigc-bench


185:4 Dan Plyukhin, Gul Agha, and Fabrizio Montesi

Table 1. Comparison of cyclic actor GCs.

Message

order

Proof?

Fault-

tolerant?

Dropped msg

recovery?

Crashed node

recovery?

Venkatasubramanian et al [49] FIFO ✓ ✗ ✗ ✗

Puaut [40] FIFO ✗ ✓ ✓ ✗

Kafura et al [21] FIFO ✗ ✗ ✗ ✗

Vardhan-Agha [45] FIFO ✓ ✓ ✗ ✗

Kamada et al [23] none ✗ ✗ ✗ ✗

Wang-Varela [51] none ✗ ✓ ✗ ✗

Clebsch-Drossopoulou [13] causal ✓ ✓ ✗ ✗

Plyukhin-Agha [38] none ✓ ✓ ✗ ✗

CRGC none/FIFO ✓ ✓ ✓ ✓

2.1 Acyclic GCs
Acyclic GCs allow actors to detect when no other actor has a reference to them. This is done either

with reference counting [6, 35, 52] or reference listing [38, 51]; both approaches involve involve

sending “control messages” when actors gain or lose references. Acyclic GCs are appealingly simple,

but dropped control messages are difficult to recover from [7, 32, 42]. These GCs also cannot collect

cyclic actor garbage, which occurs in supervision hierarchies where parent actors and their children

have references to one another [4]. It is also possible to create cyclic garbage with monitoring, as

we show in Section 3.

2.2 Cyclic GCs
Early cyclic GCs used one of three broad approaches. The global snapshot approach [22, 48]

computes an approximately-consistent global snapshot of the cluster and then searches the global

snapshot for actor garbage. The tracing approach [21, 23, 40, 51] is based on traditional tracing

collectors [20] but adapted to the actor setting. The actor-to-object approach [15, 45, 50] adds edges

to the actor reference graph, so that actor garbage coincides with traditional garbage. All three

approaches are appealingly similar to traditional GCs. However, they are often complex, lacking

proofs of correctness, and involving costly distributed synchronization. Only Puaut’s actor GC is

capable of recovering from dropped messages [40]. These approaches are problematic because they

assume the collector can get a global view of the cluster; any slow actors, threads, and nodes will

cause delays and must be handled explicitly.

More recent work uses a collage-based approach, inwhich actors send snapshots of their local state
to the garbage collector without any distributed coordination. The resulting set of snapshots, which

we call a collage, is not necessarily global or consistent in the sense of Chandy and Lamport [12].

Nevertheless, collage-based GCs can use message-passing protocols [13] or information in the

collage itself [37, 38] to identify subsets of the collage corresponding to garbage actors. Collage-

based GCs do not assume that every actor has recorded a snapshot, so these approaches can

naturally collect some garbage even when certain nodes are unresponsive.

The first collage-based GC was MAC, introduced by Clebsch and Drossopoulou in the Pony

language [13, 14]. In MAC, actors use weighted reference counting to collect acyclic garbage and

they send local snapshots to the cycle detector when their mailbox becomes empty. Crucially, MAC

requires causal message delivery—which is not provided in popular distributed actor frameworks—

and a centralized cycle detector. Plyukhin and Agha showed that both of these assumptions could

be removed in DRL, a collage-based GC based on reference listing [37]. They also demonstrated that

distributed garbage collection can be parallelized across a team of node-local garbage collectors [38].

However, neither MAC nor DRL is fault-recovering: actors referenced by crashed nodes can never

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 185. Publication date: June 2025.



CRGC: Fault-Recovering Actor Garbage Collection in Pekko 185:5

be collected. The key issue is that crashed nodes hold important data, like the number of messages

or references sent by the node, but that data can never be recovered.

CRGC can be seen as an optimized version of DRL where actors do not send control messages.Our

key technical contribution is showing how to make actor GC fault-recovering. We do this by

extending the model to take into account cluster membership protocols (Section 3) and adding basic

instrumentation to each node’s message ingress points (Section 4.1). With this extra machinery,

healthy nodes can synthesize “effective snapshots” for crashed nodes, permitting more actors to be

garbage collected than in DRL or MAC. We also introduce the notions of shadow graphs and undo
logs for representing collages efficiently in memory (Section 4.2).

Table 1 compares cyclic actor GCs. Message order indicates if application messages between

actors must be delivered in a certain order; CRGC does not require FIFO delivery in the theoretical

model (Section 4) but we exploit it in our implementation (Section 5). Fault-tolerant indicates that
the GC does not become stuck when nodes crash. Fault-recovery is a stronger property: it is the

ability to collect actors that have become garbage because of a fault.

2.3 Virtual Actors and Passivation
A virtual actor [10, 29] is an actor with an infinite lifetime; virtual actors are automatically restarted

if they throw an exception, and re-instantiated elsewhere if their original node crashes. In contrast,

ordinary actors in Pekko and Akka (like the processes in Erlang and Elixir) have an explicit lifecycle

and can be monitored for failure. CRGC is designed for the latter semantics, which offers lower

overhead and greater control, at the cost of convenience.

Virtual actors can be passivated—i.e., removed from memory and persisted to disk—to conserve

resources [29, 34]. However, choosing a passivation policy requires guesswork and risks thrashing

(passivating too often and hurting performance) or underutilization (passivating too little and

incurring unnecessary resource costs). Passivation is also unsuitable for dynamic workloads that

spawn large numbers of actors, as in the Savina benchmark suite [19]. In the future, programmers

could combine actor GC and passivation to reduce the burden on the programmer—using GC on

short timescales and using passivation on long timescales. Actor GC is somewhat orthogonal to

passivation, because some actors only receive messages infrequently and never become garbage.

3 Model
To present CRGC, we will need a model for distributed actor systems. Our model incorporates the

kinds of faults seen in some earlier work [40, 46]—namely, crashed nodes and dropped or reordered

messages—but it also includes mechanisms that have not been considered before. In particular,

actors in our model may halt during execution due to uncaught exceptions, and actors may monitor

one another for failure. Our model also includes a high-level cluster membership protocol, based
on the protocols Pekko and Akka use to remove misbehaving nodes from the cluster; we use

this protocol in Section 4 to make CRGC fault-recovering. We show how these failure scenarios

and fault-handling mechanisms can lead to subtle, unintuitive behavior that arises in practice.

Nevertheless, we can prove the cluster membership protocol has strong properties (Section 3.2)

and actor garbage can be precisely characterized in terms of quiescent actors (Section 3.3).

We have formalized the semantics of our model with a TLA
+
specification. Similarly to the

labeled transition systems used in prior work [13, 37, 38], TLA
+
specifications can be formatted

concisely on a page and formally reasoned about, but they can also be executed by a computer up

to bounded depth. More details can be found in the Supplement.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 185. Publication date: June 2025.



185:6 Dan Plyukhin, Gul Agha, and Fabrizio Montesi

hd

node 2

node crashed node

idle

busy halted

a acquainted with b

sticky

a b
a sent message to ba b
a monitors ba b

node 1

i

node 3

f

e g

a b

c

m1

m2

m3(b)

Fig. 2. A configuration in our model.

idle

busy

halted

(a) Actors

healthy

crashed

exiled

(b) Nodes

in-flight shunned

admitted

delivered

dropped

(c) Messages

Fig. 3. State machines for actors, messages, and nodes.

3.1 Actors
The global state of the system at some instant is called a configuration. The initial configuration
consists of a fixed set of nodes 𝑁1, . . . , 𝑁𝑛 and an actor 𝑎0 located on an arbitrary node.

Actors may be busy, idle, or halted. A busy actor can perform computation, like sending messages

and spawning new actors. An idle actor cannot do anything until some event causes it to become

busy. A halted actor cannot do anything and cannot become busy. We explain these states in more

detail below; a state machine for actors is depicted in Figure 3a.

Busy actors. A busy actor 𝑎 can do any of the following:

• Spawn actors. Actor 𝑎 creates a new actor 𝑏, thereby giving 𝑎 a reference to 𝑏. Actor 𝑏 may be

spawned onto a different node than 𝑎, c.f. Section 3.2.

• Send messages. If 𝑎 has a reference to 𝑏, then 𝑎 can send a message to 𝑏. Messages may contain

references to other actors (e.g., 𝑎 can send 𝑏 a reference to some third actor 𝑐).

• Deactivate references. If 𝑎 has a reference to 𝑏, then the reference can be deactivated by removing

the reference from 𝑎’s local state.

• Halt or become idle. Actor 𝑎 can become halted (e.g., due to an uncaught exception) or become

idle (e.g., because it finished handling a message and is ready to receive a new one).

• Begin/end monitoring an actor. If 𝑎 has a reference to 𝑏, then 𝑎 can ask to be notified by the

runtime system when 𝑏 halts. Actor 𝑎 will also be notified if 𝑏 is exiled, c.f. Section 3.2.

• Register/unregister as “sticky”. Sticky actors model the fact that some actors can spontaneously

become busy (e.g., by setting a timeout or receiving messages from outside the system).

In Figure 2, actor 𝑒 monitors 𝑐 and 𝑓 , and 𝑔monitors ℎ. Actors 𝑒 , 𝑓 , and 𝑔 have undelivered messages.

The message from 𝑖 to 𝑔 contains a reference to 𝑏.

Idle actors. An idle actor can do the following:

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 185. Publication date: June 2025.



CRGC: Fault-Recovering Actor Garbage Collection in Pekko 185:7

• Receive a message. When 𝑎 receives a message 𝑚, the actor becomes busy and adds all the

references in𝑚 to 𝑎’s local state.

• Receive a failure notification. If 𝑎 is monitoring 𝑏 and 𝑏 halted, then 𝑎 can become busy. Messages

and failure notifications can arrive out of order, as shown in Figure 4.

• Spontaneously wake up (if sticky). Idle sticky actors can spontaneously become busy.

In Figure 2, actor 𝑒 can receive a failure notification because it monitors a halted actor, and 𝑔 will

be able to receive a failure notification once ℎ’s node is exiled, c.f. Section 3.2. If 𝑔 receives the

message𝑚3 (𝑏), it will become busy and be able to send a message to 𝑏. Actor 𝑎 is idle, but it can

become busy because it is sticky.

Messages. Message delivery is asynchronous. Every actor has a mailbox that stores undelivered

messages. If 𝑎 sends a message to some 𝑏 on the same node, then 𝑎 puts the message directly in 𝑏’s

mailbox. If 𝑏 is on a remote node, then the message is initially in flight from one node to the other,

before being admitted to 𝑏’s node and added to its mailbox. This distinction between in-flight and

admitted messages is crucial to how failures are handled.

Some actor GCs assume messages are delivered in a particular order. For instance, Pony’s actor

GC requires causal message delivery [13]. Pekko, Akka, Erlang, and Elixir only guarantee that

messages are delivered in FIFO order [30]. Our actor GC will not impose any constrains on message

order, except for FIFO delivery between actors and their local garbage collector (Section 5).

Monitoring. The semantics of monitoring is similar to message passing, but with some crucial

differences. If 𝑎 begins monitoring an actor and that actor fails—i.e., the actor halts or its node is

exiled—then 𝑎 is guaranteed to eventually receive a failure notification. Even if the monitored actor

failed before monitoring began, 𝑎 will still be notified. Hence monitoring cannot easily be modeled

in terms of message passing alone.

3.2 Nodes
Every actor has a fixed location on some node. Nodes are either healthy or crashed; actors on
healthy nodes execute normally, but actors on crashed nodes cannot take actions and their local

state is unrecoverable. In Pekko, Akka, Erlang, and Elixir, actors can detect crashes with monitoring:

if actor 𝑎 is monitoring a remote actor 𝑏 and 𝑏’s node crashes, then 𝑎 will eventually be notified.

However, actor frameworks differ in how they handle transient failures. In Erlang and Elixir, 𝑎

will be notified when 𝑏’s node disconnects [43]; it is up to the application developer to decide

if the node “really” crashed, or merely underwent a temporary network partition. In Pekko and

Akka, nodes use a cluster membership protocol [28, 41] to force all misbehaving nodes out of the

cluster—even nodes that have not really crashed. The latter semantics is crucial for fault-recovering

actor GC, because otherwise we can never be certain that actors on a supposedly-crashed node

will not return. We model cluster membership at a high level, abstracting implementation details

and not assuming any kind of global synchronization.

3.2.1 Cluster Membership. In Pekko and Akka, healthy nodes use failure detectors [11, 18, 28] to

identify nodes that may have crashed. We assume all crashed nodes are eventually detected, but

some healthy nodes may be misdiagnosed as crashed.

If 𝑁1 suspects 𝑁2 crashed, then 𝑁1 can make the irrevocable decision to shun 𝑁2. As a result,

messages from 𝑁2 will no longer be admitted into 𝑁1 (although messages that have already been

admitted can still be delivered). After 𝑁1 shuns 𝑁2, every other node must eventually either shun

𝑁2 or else be shunned by 𝑁1. When some group of nodes G1 has shunned all the remaining nodes

G2, we say G1 has exiled G2: from the perspective of G1, the exiled nodes in G2 are indistinguishable

from crashed nodes. The state machine for nodes is depicted in Figure 3b.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 185. Publication date: June 2025.



185:8 Dan Plyukhin, Gul Agha, and Fabrizio Montesi

a b

idle

busy halted

a acquainted with b

sticky

a b
a sent message to ba b
a monitors ba b

(a)

a b(b)

a(c) b

Fig. 4. A sequence of configurations showing how failure signals and messages can arrive out of order. In
configuration (a), actor 𝑏 monitors 𝑎 and also has a deliverable message from 𝑎. In configuration (b), actor 𝑎
halts. In configuration (c), 𝑏 is notified that 𝑎 halted before 𝑏 receives the message.

Notice that nodes can crash while a node is being exiled from the system. For example, one node

can shun another and immediately crash. Let us say a node is faulty if it crashes at some point in

time. Assuming every execution has a non-faulty node, our model has the following properties:
4

Lemma 3.1. Every faulty node is eventually exiled.

Lemma 3.2. If 𝑁1 shunned 𝑁2 then eventually 𝑁2 will be exiled or 𝑁1 will be exiled.

The cluster membership protocol can also result in “split-brain scenarios”, where two groups of

healthy nodes exile one another. For example, nodes 1 and 2 can exile each other in Figure 2. From

the perspective of actor GC, these scenarios are irrelevant: the garbage collector in node 1 can

proceed as if node 2 crashed, and vice versa. Hence, without loss of generality, we assume healthy

nodes that have been exiled do not take actions.

3.2.2 Dropped Messages. We assume all undelivered messages can be dropped. In practice, mes-

sages in flight from one node to another can be dropped because a TCP connection resets. Messages

sent between actors on the same node can also be dropped if the recipient has a bounded mail-

box [30]. We assume a mechanism that eventually detects how many messages have been dropped

and what references those messages contained. Pekko and Akka do not provide this mechanism

natively, but it can be implemented using Puaut’s technique [40]. The complete state machine for

messages is depicted in Figure 3c.

3.3 Actor Garbage
In modern actor frameworks, any busy actor can potentially have observable effects like writing

to a file. We therefore follow recent work [13, 38, 46] and define garbage actors to be actors that

never become busy. But just by looking at a configuration at some instant in time, how do we

predict which actors will never become busy? The problem is not as simple as in traditional GCs,

where garbage objects are those that cannot be reached from the root set [20]. Fortunately, we can

use properties of actor systems to characterize which actors will surely never become busy; these

actors are said to be quiescent. But first, we need to define some properties about configurations:

Definition 3.3. A message is deliverable if either (1) it has been admitted, or (2) it is in-flight and

the recipient’s node has not shunned the sender’s node. We say actor 𝑎 has a deliverable message if

𝑎 is the recipient of a deliverable message.

An actor 𝑎 is potentially acquainted with actor 𝑏 if 𝑎 has a reference to 𝑏 or 𝑎 has a deliverable

message containing a reference to 𝑏. In this situation, 𝑏 is a potential acquaintance of 𝑎 and 𝑎 is a

potential inverse acquaintance of 𝑏.
4
All proofs are relegated to the Supplemenal Text, which can be found at github.com/dplyukhin/crgc-spec.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 185. Publication date: June 2025.

https://github.com/dplyukhin/crgc-spec


CRGC: Fault-Recovering Actor Garbage Collection in Pekko 185:9

b
a

c
message

activation

d

(1)

(2)

(3)

(4)

idle

busy

reference b ca

ab cd

b cd a

b cd a

quiescent

message

forget ca,c

c
c

a,c

c

Fig. 5. A sample execution in our model. On the left is a time diagram with four consistent cuts. On the right
we see the configuration in each of those four cuts.

An actor 𝑎 is blocked if 𝑎 is idle and has no deliverable messages. Otherwise, 𝑎 is unblocked.
An actor 𝑎 has failed if it is halted or its node is exiled. Otherwise, 𝑎 is healthy.

In Figure 2, messages𝑚2 and𝑚3 are deliverable unless node 2 shuns node 3 before the messages

are admitted. If𝑚3 is deliverable, then actor 𝑔 is unblocked and potentially acquainted with 𝑏; this

implies 𝑑 is not garbage, because 𝑔 could send a message to 𝑏 and 𝑏 could send a message to 𝑑 .

But if𝑚3 is dropped or node 2 shuns node 3 before𝑚3 is admitted, then the message is no longer

deliverable, and 𝑏 and 𝑑 are garbage because they can never become busy.

Monitoring also has surprising effects on actor garbage. In Figure 2, since 𝑒 monitors 𝑓 and has

a reference to it, the two actors have a cyclic dependency on one another: actor 𝑓 is not garbage

unless 𝑒 is garbage (otherwise, 𝑒 could send 𝑓 a message), and 𝑒 is not garbage unless 𝑓 is garbage

(otherwise, 𝑓 could become busy and then halt, causing 𝑒 to receive a failure notification).

In general, a healthy actor 𝑎 can become busy if and only if one of the following can occur: 𝑎

receives a message; 𝑎 is sticky and spontaneously wakes up; 𝑎 monitors an actor that halted; or 𝑎

monitors an actor on a different node that was exiled. If an actor satisfies none of these properties

in a given configuration, we say it is quiescent:

Definition 3.4. An actor 𝑏 is quiescent if 𝑏 has failed or all of the following hold:

1. 𝑏 is blocked;

2. 𝑏 is not sticky;

3. If any 𝑎 is potentially acquainted with 𝑏, then 𝑎 is quiescent; and

4. If any 𝑎 is monitored by 𝑏, then 𝑎 is quiescent, not failed, and located on the same node.

Figure 5 shows an execution where actors become quiescent. In (1), 𝑏 is unblocked and potentially

acquainted with 𝑎 and 𝑐 . In (2), 𝑎 and 𝑑 are unblocked and 𝑎 has references to 𝑏 and 𝑐 . In (3), 𝑎, 𝑏,

and 𝑑 are quiescent because they are idle and so are their potential inverse acquaintances—but 𝑐 is

unblocked. In (4), all the actors are quiescent.

As expected, quiescence is a tight characterization for actor garbage in our model:

Theorem 3.5. An actor 𝑎 is garbage if and only if 𝑎 is quiescent.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 185. Publication date: June 2025.



185:10 Dan Plyukhin, Gul Agha, and Fabrizio Montesi

Table 2. Information recorded locally by an actor 𝑎 in CRGC.

Field Description
𝑎.status Either “idle”, “busy”, or “halted”.

𝑎.isSticky True if 𝑎 is sticky; False otherwise.

𝑎.monitored The set of actors currently monitored by 𝑎.

𝑎.received The number of messages that 𝑎 has received.

𝑎.sent(𝑏) The number of messages that 𝑎 has sent to 𝑏.

𝑎.created(𝑏, 𝑐) The number of references to 𝑐 that 𝑎 has sent to 𝑏.

𝑎.deactivated(𝑏) The number of references to 𝑏 that 𝑎 has deactivated.

Thus, despite the numerous complications in our model—dropped messages, faulty actors, moni-

tor signals arriving out-of-order with messages—we arrived at a definition of actor garbage that

straightforwardly generalizes the definition from simpler models [38]. Crucially, our definition

accounts for garbage resulting from faults: consider an idle, non-sticky actor 𝑎 that does not monitor

any other actors. If all potential inverse acquaintances of 𝑎 are garbage or located on exiled nodes,

then 𝑎 is garbage.

4 Fault-Recovering Actor Garbage Collection
Now that we have seen how garbage actors coincide with quiescent actors, we can present CRGC:

an actor GC that detects quiescent actors. We begin in Section 4.1 with an abstract mathematical

view, in which actors record GC-related information in their local state and take snapshots of that

state at arbitrary times. The garbage collector is simply a function whose input is a collage (a set of

local snapshots) and whose output is a set of actors that “appear” quiescent in the collage. We prove

garbage collection is sound (actors that appear quiescent are quiescent) and complete (quiescent

actors eventually appear quiescent).

However, the abstract view above does not readily admit an efficient implementation. In Sec-

tion 4.2, we show how collages can be represented efficiently as shadow graphs with a distinguished

set of pseudo-root nodes; actors that appear quiescent in the collage coincide with nodes in the

graph that are not reachable from a pseudo-root. This result establishes a pleasing correspondence

between CRGC and traditional tracing garbage collectors.

We have formalized a model of CRGC and shadow graphs as TLA
+
specifications. All proofs in

this section are written with respect to those specifications, the semantics of which are defined by

set theory and the temporal logic of actions [25].

4.1 Garbage Collection with Collages
In this version of CRGC, actors record information in their local state and take snapshots of that

information at arbitrary times. Nodes are equipped with ingress points that record information

about messages admitted from the network and also take snapshots of this recorded state. A

collection of local snapshots from distinct actors and ingress points is called a collage. We will show

that, by recording the right kind of information in each snapshot, garbage collectors can detect

quiescent actors without the need for locks or inter-actor synchronization protocols. This approach

is fundamentally different from actor GCs that use consistent global snapshots [12] because collages

are neither consistent nor global.

4.1.1 Actor Local State. Table 2 lists the information an actor needs to record in its local state.

The status, isSticky, and monitored fields all reflect properties of an actor at a given time 𝑡 . The

remaining fields grow monotonically, summarizing all the actions 𝑎 performed since it was first

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 185. Publication date: June 2025.



CRGC: Fault-Recovering Actor Garbage Collection in Pekko 185:11

Table 3. Information recorded by an ingress point 𝐼𝑁,𝑁 ′ in CRGC.

Field Description
𝐼𝑁,𝑁 ′ .shunned True if 𝑁 has been shunned by 𝑁 ′

; False otherwise.

𝐼𝑁,𝑁 ′ .admittedMsgs(𝑎) The number of messages that 𝑁 has sent to 𝑎 and that

have been admitted to 𝑁 ′
.

𝐼𝑁,𝑁 ′ .admittedRefs(𝑎, 𝑏) The number of references to 𝑏 that 𝑁 has sent to 𝑎 and

that have been admitted to 𝑁 ′
.

(1) (2)b ca ab cd

a,c c

created
a,b: 1

created
a,c: 1

created
b,d: 1

created
b,a: 1
b,c: 1

created
a,b: 1
a,c: 1
d,c: 1

created
a,c: 1

created
b,a: 1
b,c: 1

Fig. 6. Actors from Figure 5, annotated with CRGC creation counts.

spawned. In particular, the sent, created, and deactivated fields are growable associative arrays,

mapping actors (or pairs of actors) to integers. In practice, these arrays impose a memory leak;

we solve this problem in Sections 4.2 and 5. For now, we assume each actor maintains all the

information in Table 2, and records this information whenever it takes a local snapshot. (Note

that actors do not need locks to read and write local information atomically, because actors are

single-threaded.)

Actors update their local state whenever they perform the events listed in Section 3.1. When

actor 𝑎 is first spawned by some actor 𝑏, the field 𝑎.created(𝑏, 𝑎) is initialized to 1. (That is, 𝑎

grants its parent a reference upon being spawned.) When 𝑎 receives a message it sets 𝑎.status
to “busy” and increments 𝑎.received. When 𝑎 sends a message to 𝑏 containing a reference to 𝑐 , it

increments 𝑎.sent(𝑏) and 𝑎.created(𝑏, 𝑐). When 𝑎 no longer needs a reference to 𝑏, it increments

𝑎.deactivated(𝑏).
Actors recover from dropped messages by updating their state as if the message was delivered

normally. When an idle actor 𝑎 learns that a message containing references to 𝑏 and 𝑐 was dropped,

it increments 𝑎.received, 𝑎.deactivated(𝑏), 𝑎.deactivated(𝑐) and its status remains “idle”. Thus 𝑎’s

state is the same as if the message was delivered and its references were immediately deactivated.

Of all these fields, 𝑎.created is the most unusual. It ensures there is always a “contact trace” from

𝑎 to any actor that potentially has a reference to 𝑎 [37]. This can be seen by annotating Figure 5

with creation counts, as shown in Figure 6, and focusing on actor 𝑐 . Initially, 𝑐 was spawned

by 𝑎 so 𝑐.created(𝑎, 𝑐) > 0. Then 𝑎 sends 𝑏 a reference to 𝑐 , and 𝑏 sends 𝑑 a reference to 𝑐 , so

𝑎.created(𝑏, 𝑐) > 0 and 𝑏.created(𝑑, 𝑐) > 0. This contact tracing chain—from 𝑐’s local state to 𝑎,

from 𝑎’s local state to 𝑏, and from 𝑏’s local state to 𝑑—will allow the GC to check whether it has

enough snapshots from enough actors to tell that 𝑐 is quiescent.

4.1.2 Ingress Points. An ingress point 𝐼𝑁,𝑁 ′ is responsible for admitting messages from node 𝑁

onto 𝑁 ′
. Every pair of nodes has an ingress point located at the recipient, and we assume ingress

points record the information in Table 3. If 𝑁 ′
admits a message from 𝑁 destined for 𝑎 contain-

ing references to 𝑏 and 𝑐 , then 𝑁 ′
increments 𝐼𝑁,𝑁 ′ .admittedMsgs(𝑎), 𝐼𝑁,𝑁 ′ .admittedRefs(𝑎, 𝑏),

and 𝐼𝑁,𝑁 ′ .admittedRefs(𝑎, 𝑐). The node also increments these fields if it learns such a message

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 185. Publication date: June 2025.



185:12 Dan Plyukhin, Gul Agha, and Fabrizio Montesi

idle

busy

reference

message

exiled node

healthy node

c

a b

sent(b): 7
created(c,b): 1

received: 5
created(a,b): 1

ingress point

msgs(b): 5

m1(b)

m2,m3

c

a b

sent(b): 7
created(c,b): 1

received: 5
created(a,b): 1

msgs(b): 6
shunned: true

m1(b)

m3

refs(c,b): 1
shunned: true

m2

(a) (b)

node 3 node 3

node 1 node 1node 2 node 2

Fig. 7. An example with ingress points. For legibility, some information in actor and ingress states is not
shown.

was dropped. In addition, if 𝑁 ′
shuns 𝑁 , then 𝐼𝑁,𝑁 ′ .shunned is eventually set to True; hence

𝐼𝑁,𝑁 ′ .shunned = True implies the other fields of 𝐼𝑁,𝑁 ′ will never change again.

Figure 7 shows how ingress points make up for the fact that exiled actors cannot take snapshots.

In Figure 7 (a), actor 𝑎’s local state shows it sent seven messages to 𝑏 and gave 𝑐 a reference to 𝑏. In

Figure 7 (b), actor 𝑎 is exiled and can no longer take a snapshot—but the ingress points on nodes 2

and 3 can provide an “effective snapshot” of all 𝑎’s effects.

Let 𝑆 be a collage, i.e. a partial function mapping from actors and ingress points to local snapshots.

Then we define what it means for an actor or node to appear exiled:

Definition 4.1. Node 𝑁 appears exiled if the set of all nodes can be partitioned into two nontrivial

groups G1,G2, where 𝑁 ∈ G1 and 𝑆 (𝐼𝑁1,𝑁2
).shunned for each 𝑁1 ∈ G1, 𝑁2 ∈ G2.

Actor 𝑎 appears exiled if 𝑎 is located on a node that appears exiled.

Actor 𝑎 has an effective snapshot in 𝑆 if 𝑎 has a snapshot in 𝑆 or 𝑎 appears exiled in 𝑆 .

4.1.3 ApparentQuiescence. Given a collage 𝑆 , we show how to check if an actor appears blocked (by

tallying message send and receive counts) and how to find which actors appear acquainted with it

(by tallying created and deactivated counts). We will use these notions to define which actors appear

quiescent, as a straightforward analogue of Definition 3.4. Since 𝑆 is not consistent, we cannot

assume a priori that actors appearing have some property ever actually had that property [12, 13].

Nevertheless, we will prove that CRGC provides enough information that appearing quiescent is

sufficient to imply quiescence (Theorem 4.5), and moreover every quiescent actor will eventually

appear quiescent under reasonable assumptions (Theorem 4.6).

Counting Messages and References. In the absence of failures, accounting for messages and

references is simple. We can define “the number of message sent to 𝑏 according to 𝑆” as the

sum

∑
𝑎∈dom(𝑆 ) 𝑆 (𝑎).sent(𝑏). If this total is equal to 𝑆 (𝑏).received, we can say 𝑏 appears blocked.

Likewise, we can say 𝑏 appears to have references to 𝑐 if the number of references created

(

∑
𝑎∈dom(𝑆 ) 𝑆 (𝑎).created(𝑏, 𝑐)) exceeds the number of references𝑏 deactivated (𝑆 (𝑏).deactivated(𝑐)).

However, we cannot guarantee that exiled actors will ever have a snapshot in 𝑆 . Instead, as shown

earlier, we must make up for the missing actor snapshots using snapshots from ingress points. This

leads us to the revised definitions below.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 185. Publication date: June 2025.



CRGC: Fault-Recovering Actor Garbage Collection in Pekko 185:13

Let G1 be the set of nodes that do not appear exiled, let G2 is the set of nodes that do appear

exiled, and let 𝑁𝑏 denote the location of actor 𝑏. For any pair of actors 𝑏, 𝑐 , we define:

sent(𝑏) =
∑︁

𝑁1∈G1

∑︁
𝑎∈𝑆 (𝑁1 )

𝑆 (𝑎).sent(𝑏) +
∑︁

𝑁2∈G2

𝑆 (𝐼𝑁2,𝑁𝑏
) .admittedMsgs(𝑏)

created(𝑏, 𝑐) =
∑︁

𝑁1∈G1

∑︁
𝑎∈𝑆 (𝑁1 )

𝑆 (𝑎).created(𝑏, 𝑐) +
∑︁

𝑁2∈G2

𝑆 (𝐼𝑁2,𝑁𝑏
).admittedRefs(𝑏, 𝑐)

received(𝑏) =
{
𝑆 (𝑏).received if 𝑏 ∈ dom(𝑆)
0 otherwise

deactivated(𝑏, 𝑐) =
{
𝑆 (𝑏).deactivated(𝑐) if 𝑏 ∈ dom(𝑆)
0 otherwise,

where we write 𝑎 ∈ 𝑁 if 𝑎 is located on 𝑁 , and 𝑆 (𝑁 ) denotes the set of actors on 𝑁 with

snapshots in 𝑆 . For example, the number of messages 𝑎 sent to 𝑏 according to 𝑆 is computed

by (1) adding up 𝑆 (𝑎) .sent(𝑏) for each actor 𝑎 that doesn’t appear exiled; and (2) adding up

𝑆 (𝐼𝑁,𝑁𝑏
).admittedMsgs(𝑏) for each apparently exiled node 𝑁 .

We use the counts above to define the collage’s view of the cluster:

Definition 4.2. Actor 𝑎 appears acquainted with 𝑏 if created(𝑎, 𝑏) > deactivated(𝑎, 𝑏).
Actor 𝑎 appears to monitor 𝑏 if 𝑏 ∈ 𝑆 (𝑎).monitored.
Actor 𝑎 appears idle, busy, or halted if 𝑆 (𝑎).status = “idle”, “busy”, or “halted”, respectively.

Actor 𝑎 appears to have failed if 𝑎 appears halted or exiled.

Actor 𝑎 appears blocked if 𝑎 appears idle and sent(𝑎) = received(𝑎).

Closure. When does a collage 𝑆 have enough snapshots to judge if a certain actor 𝑏 is quiescent?

Certainly a snapshot from 𝑏 alone is not enough—we at least need to know how many messages

were sent to 𝑏 by its parent. In addition, if 𝑏 or its parent gave other actors references to 𝑏, then we

need snapshots from those actors as well. This leads us to the notion of closure, and how we can

use contact tracing to check if a collage appears closed:

Definition 4.3. Actor 𝑎 is hereto-acquainted with actor 𝑏 at time 𝑡 if 𝑎 had a reference to 𝑏 at

some time 𝑡 ′ ≤ 𝑡 . A collage 𝑆 is hereto-closed for 𝑏 if every actor hereto-acquainted with 𝑏 has an

effective snapshot.

Actor 𝑎 appears hereto-acquainted with 𝑏 if created(𝑎, 𝑏) > 0. Collage 𝑆 appears hereto-closed for

𝑏 if, for every 𝑎, created(𝑎, 𝑏) > 0 implies 𝑎 has an effective snapshot.

Apparent Quiescence. Combining all the definitions up to this point, we can finally define what

it means for an actor to “appear” quiescent. Formally, we adapt our definition of quiescence

(Definition 3.4) as follows.

Definition 4.4. Actor 𝑏 appears quiescent in collage 𝑆 if 𝑏 appears to have failed or all of the

following hold:

1. 𝑆 appears hereto-closed for 𝑏;

2. 𝑏 appears blocked;

3. 𝑏 does not appear sticky;

4. If any 𝑎 appears acquainted with 𝑏, then 𝑎 appears quiescent; and

5. If any 𝑎 appears monitored by 𝑏, then 𝑎 appears quiescent, does not appear to have failed,

and is located on the same node as 𝑏.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 185. Publication date: June 2025.



185:14 Dan Plyukhin, Gul Agha, and Fabrizio Montesi

a b c

snapshot

message

busy

sent(b): 1

received: 1

sent(b): 0

a1 b a2

(exiled)

m1(c)

m3(c)

(a) (b)

Fig. 8. Examples in the proof of CRGC soundness.

Up to this point, we have taken care to differentiate “apparent” properties from “real” ones

because collages are not always consistent—for example, an actor that appears blocked might never

have been blocked in reality. But by combining all the properties in the definition above, it so

happens that actors appear quiescent only if they are truly quiescent. We sketch the key ideas

below and give a complete proof in the Supplemental Material.

The property follows from a two-part invariant:

(IV1) If 𝑎 appears quiescent and has taken a snapshot, then it is not busy.

(IV2) If 𝑎 has taken a snapshot and has a reference to an actor that appears quiescent, then 𝑎

appears quiescent.

As long as the invariant holds, any actor 𝑏 with a reference to an apparently-quiescent actor 𝑐

will have an effective snapshot. This is because only an actor with an effective snapshot could have

given 𝑏 the reference, and the reference must have been given before the snapshot was recorded.

Figure 8 (a) shows an example: if actor 𝑎1 had sent the reference after taking a snapshot, it would

violate the invariant because 𝑎1 would be a busy actor with a reference to an apparently quiescent

actor. There is also no way for an apparently exiled actor like 𝑎2 to have sent the reference after

being exiled, because 𝑎2’s node has already been shunned.

Theorem 4.5 (Soundness). Let 𝑆 be a collage and let𝑄 be a subset of dom(𝑆) that appears quiescent.
Then 𝑄 is quiescent.

Proof (sketch). By contradiction; the proof can be seen as a generalization of Mattern’s channel

counting argument [31]. Suppose 𝑏 is the first actor to violate the invariant. There are two cases.

Case 1. Actor 𝑏 appears quiescent and became busy after taking a snapshot. This could happen if:

1. 𝑏 received a message. As we argued above, the message must have been sent by an actor 𝑎

with an effective snapshot. It could not have been sent after the effective snapshot because 𝑏
was the first actor to violate the invariant. This is shown in Figure 8 (b): actor 𝑎 could only

have sent the message after taking a snapshot if 𝑎 violated the invariant before 𝑏 did.

Hence all messages sent to 𝑏 up to this point are accounted for in 𝑆 , and since 𝑏 appears

blocked, these messages must have all been received before 𝑏’s snapshot; a contradiction.

2. 𝑏 is sticky and received a wakeup signal. Impossible because we assumed 𝑏 appears quiescent,

so 𝑏 was not sticky when it took a snapshot.

3. 𝑏 monitors an actor 𝑐 and is notified that 𝑐 halted. Impossible because 𝑏 only monitors local

actors that appear quiescent, and 𝑐 would need to become busy before it could halt.

Case 2. Let 𝑏 be the first busy actor that has taken a snapshot, does not appear quiescent, and has

a reference to some 𝑐 that appears quiescent. The actor that gave the reference to 𝑏 must have an

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 185. Publication date: June 2025.



CRGC: Fault-Recovering Actor Garbage Collection in Pekko 185:15

idle

busy

halted

reference

message

monitor

sticky

a

b c

d e

a

b c

d e

actor

dependency

pseudo-root

real world shadow world

gc

Fig. 9. Actors send snapshots to the garbage collector, which uses the snapshots to construct a shadow graph.

effective snapshot. The reference could not have been given after the sender’s effective snapshot.

Hence all 𝑐-references sent to 𝑏 up to this point are accounted for in 𝑆 , and since 𝑏 does not appear

quiescent, these references must have been deactivated before its snapshot; a contradiction.

□

We also show that quiescent actors eventually appear quiescent, once the garbage collector has

recent-enough snapshots and once notifications about dropped messages have been delivered.

Theorem 4.6 (Completeness). Assume that:
1. Every crashed node is eventually exiled, and at least one node is never exiled.
2. Ingress points and actors on healthy nodes will always eventually take a snapshot.
3. Healthy actors are eventually notified about dropped messages from healthy nodes.

Then all quiescent actors eventually appear quiescent.

Proof (sketch). Let 𝐴 be the set of all actors at time 𝑡0, and let 𝑄 ⊆ 𝐴 be the set of actors that

are quiescent at 𝑡0. Pick a time 𝑡1 > 𝑡0 when all exiled nodes appear exiled and all healthy actors in

𝐴 have been notified about dropped messages from healthy nodes up to time 𝑡0. Let 𝑆 be a collage

in which every actor in 𝐴 either appears exiled or has taken a snapshot after 𝑡1. Then for every

𝑐 ∈ 𝑄 , sent(𝑐) = received(𝑐); and for every 𝑎, created(𝑎, 𝑐) > deactivated(𝑎, 𝑐) if and only if 𝑎 ∈ 𝑄 .

Hence all the actors in 𝑄 appear quiescent. □

4.2 Shadow Graphs and Undo Logs
In the previous section, we represented a collage 𝑆 as a mapping from actors and ingress points to

local snapshots. In this section we show that collages can be represented more efficiently as a pair

of data structures: a shadow graph and a set of undo logs. In Section 5, we will show how shadow

graphs and undo logs can be built incrementally by merging updates from actors and ingress points,

so a full actor snapshot never needs to be stored.

4.2.1 Shadow Graphs. Given a collage 𝑆 , a shadow graph is a directed multigraph with a node for

each actor that occurs anywhere in 𝑆 . Formally, shadows are defined in Figure 10 and a shadow
graph is a map 𝐺 from actors to their shadows. Shadows are the nodes in the shadow graph, and

we say there is an edge from 𝑎 to 𝑏 if 𝐺 (𝑎).references(𝑏) > 0 or if 𝑏 ∈ 𝐺 (𝑎).watchers.
Shadow graphs have less information than collages. In a collage, the snapshot for actor 𝑎 includes

the number of messages 𝑎 sent to each hereto-acquaintance 𝑏, as well as the number of references

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 185. Publication date: June 2025.



185:16 Dan Plyukhin, Gul Agha, and Fabrizio Montesi

𝑠 .interned =

{
True if 𝑏 ∈ dom(𝑆)
False otherwise

𝑠 .status =

{
𝑆 (𝑏).status if 𝑏 ∈ dom(𝑆)
Undefined otherwise

𝑠 .isSticky =

{
𝑆 (𝑏).isSticky if 𝑏 ∈ dom(𝑆)
Undefined otherwise

𝑠 .watchers = {𝑎 : 𝑏 ∈ 𝑆 (𝑎).monitored}

𝑠 .undelivered =
∑︁

𝑎∈dom(𝑆 )
𝑆 (𝑎).sent(𝑏) − received(𝑏)

𝑠 .references(𝑐) =
∑︁

𝑎∈dom(𝑆 )
𝑆 (𝑎) .created(𝑏, 𝑐) − deactivated(𝑏, 𝑐)

Fig. 10. The definition of a shadow for actor 𝑏 in collage 𝑆 .

𝑎 created. In a shadow graph, message send and receive counts are collapsed into a single field,

𝐺 (𝑏).undelivered. Likewise, reference creation and deactivation counts for 𝑏 are collapsed into the

map 𝐺 (𝑏).references.
While the domain of a collage is the set of actors that have taken snapshots, the domain of a

shadow graph is the set of actors that occur in the snapshots. For example, if actor 𝑎 has a snapshot

in which 𝑆 (𝑎).sent(𝑏) > 0, then 𝑏 has a node in the shadow graph; the bit 𝐺 (𝑏).interned indicates

whether 𝑏 has a snapshot in 𝑆 .

Although shadow graphs have less information than collages, they retain enough information to

identify garbage. Borrowing terminology from Wang and Varela [51], we identify the shadows that

are self-evidently not garbage:

Definition 4.7. Actor 𝑏 is a pseudo-root in shadow graph 𝐺 if any of the following hold:

1. 𝐺 (𝑏) .interned is False,𝐺 (𝑏).isSticky is True,𝐺 (𝑏) .status is “busy”, or𝐺 (𝑏).undelivered ≠ 0.

2. There exists 𝑎 such that 𝑏 ∈ 𝐺 (𝑎).watchers and 𝐺 (𝑎).status is “halted”.

Instead of searching for actors that appear quiescent in 𝑆 , the garbage collector can build a

shadow graph𝐺 and “mark” all the shadows reachable from a pseudo-root. For instance, in Figure 9,

actors 𝑎 and 𝑐 are pseudo-roots; actors 𝑎, 𝑐 , 𝑑 , and 𝑒 are marked; and 𝑏 is unmarked. We will show

that, in the absence of faults, the unmarked actors in 𝐺 are the same actors that appear quiescent

in 𝑆 .

4.2.2 Undo Logs. When a node 𝑁 is exiled, the snapshots from actors on 𝑁 should be replaced with

snapshots from ingress points. Doing so is straightforward if we encode a collage as a collection

of snapshots. But when we encode a collage as a shadow graph, it is unclear how to roll back the

effects of only those snapshots produced by 𝑁 . For this, we introduce the concept of an undo log.

Undo logs indicate how the shadow graph should be modified when a specific node is exiled.

Definition 4.8. Given a collage 𝑆 , we define the undo log 𝐿 for node 𝑁 to be a record:

𝐿.undeliverableMsgs(𝑏) =
∑︁

𝑎∈𝑆 (𝑁 )
𝑆 (𝑎).sent(𝑏) − 𝑆 (𝐼𝑁,𝑁𝑏

).admittedMsgs(𝑏) (1)

𝐿.undeliverableRefs(𝑏, 𝑐) =
∑︁

𝑎∈𝑆 (𝑁 )
𝑆 (𝑎).created(𝑏, 𝑐) − 𝑆 (𝐼𝑁,𝑁𝑏

).admittedRefs(𝑏, 𝑐), (2)

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 185. Publication date: June 2025.



CRGC: Fault-Recovering Actor Garbage Collection in Pekko 185:17

a
c

e

gc gc

d

ba c

e
f g

a

c

e

b

d f

gg

x

xx
x

Fig. 11. Two nodes using CRGC to collect garbage. Each GC has a shadow graph, representing its view of the
cluster. When a GC finds one of its local actors is garbage, it asks the actor to stop.

where 𝑁𝑏 denotes the location of 𝑏. That is, 𝐿.undeliverableMsgs(𝑏) is the number of messages

that appear sent to 𝑏 by 𝑁 but not admitted; likewise, 𝐿.undeliverableRefs(𝑏, 𝑐) is the number of

references to 𝑐 that appear sent to 𝑏 by 𝑁 but not admitted.

Whereas shadow graphs are the GC’s view of the actors, undo logs are the GC’s view of the

network. Thus we expect the undo logs to be small as long as snapshots from ordinary actors and

ingress points do not fall too far “out of sync” with one another. Remarkably, undo logs are all we

need to recover garbage after nodes have been exiled.

Definition 4.9. Let𝐺 be a shadow graph, let 𝑁1, . . . , 𝑁𝑘 be the set of nodes that appear exiled, and

let 𝐿1, . . . , 𝐿𝑘 be the undo logs for those nodes. We define the amended shadow graph as a shadow

graph 𝐺̃ where, for each actor 𝑎:

1. 𝑎 ∈ dom(𝐺̃) if 𝑎 ∈ dom(𝐺) and either (a) 𝑎 does not appear exiled, or (b) 𝑎 appears exiled and

𝐺 (𝑎).watchers contains actors that do not appear failed;

2. 𝐺̃ (𝑎).status = halted if 𝑎 appears exiled and an actor in 𝐺 (𝑎).watchers does not appear failed;
3. 𝐺̃ (𝑎).undelivered = 𝐺 (𝑎).undelivered − 𝐿.undeliverableMsgs(𝑎);
4. 𝐺̃ (𝑎).references(𝑏) = 𝐺 (𝑎).references(𝑏) − 𝐿.undeliverableRefs(𝑎, 𝑏);
5. 𝐺̃ (𝑎).watchers is equal to 𝐺 (𝑎).watchers, excluding any actors that appear failed; and

6. 𝐺̃ (𝑎) is the same as 𝐺 (𝑎) in all other cases.

The amended shadow graph removes shadows from exiled actors, except when those actors are

monitored by non-faulty actors. The graph also repairs reference counts and message counts to

account for messages that will never be delivered. As a result, the unmarked actors in the amended

shadow graph coincide with the actors that appear quiescent in the collage.

Theorem 4.10 (Shadow Graph Eqivalence). Let 𝑆 be a collage, let 𝐺̃ be its amended shadow
graph, and let 𝑏 be an interned actor that does not appear exiled. Then 𝑏 is unmarked in 𝐺̃ if and only
if 𝑏 appears weakly quiescent in 𝑆 .

5 Implementation
We added CRGC toApache Pekko, a popular actor library for Scala and Java.We chose Pekko because

it has a built-in cluster membership service (unlike Erlang and Elixir) and supports distributed

actors. However, a complete implementation of any actor GC in Pekko exceeds the scope of this

work because Pekko has a large API that was not designed with garbage collection in mind.We focus

here on the performance and correctness issues involved in implementing CRGC, and conclude the

section with a survey of open challenges ranging from type safety to API design.

The architecture of our implementation is shown in Figure 11. Every node has a local garbage

collector (GC). Each GC is an actor with its own shadow graph and set of undo logs; actors and

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 185. Publication date: June 2025.



185:18 Dan Plyukhin, Gul Agha, and Fabrizio Montesi

ingress points send incremental updates to their local GC, which in turn broadcasts those updates

to other GCs in the cluster. Each GC periodically wakes up, merges incoming entries into its shadow

graph and undo logs, then traces its shadow graph and kills any actors on its node that appear to

be garbage. When another node is exiled from the cluster, the GC uses its undo log for the exiled

node to amend its shadow graph. We report the details of this architecture below.

5.1 Diary Entries
In Section 4, every actor’s local state contained a cumulative history of every GC-related action it

ever performed, and actors sent snapshots of this state to the garbage collector. This is inefficient

because actor states and snapshots grow without bound and because the garbage collector needs to

rebuild the shadow graph and undo logs from scratch whenever it receives an updated batch of

snapshots. In our Pekko implementation, we converted this offline algorithm into an online one.

In our Pekko implementation, actors send the local GC incremental updates called diary entries
(or simply entries). An actor’s local state only contains information about actions the actor took

since its last entry. When the GC receives an entry, it merges the entry into its shadow graph

and undo logs. As long as entries from an actor are merged in FIFO order and never dropped, the

resulting shadow graph is equivalent to a graph constructed by the offline algorithm in Section 4.2.

Users of CRGC can customize how often actors send entries. Sending entries more frequently

can lower the time it takes for garbage to be detected, but increases the amount of time the GC

spends merging entries into the graph. We implemented two simple policies: (1) Wave: Actors send
entries every 50 milliseconds; and (2) On-block: Actors send entries when their mail queue is empty.

5.2 Ingress and Egress Points
In Pekko, a node’s incoming and outgoing messages pass through a pipeline for serialization and

other processing. For CRGC, we instrumented the incoming message pipeline with an ingress point

for each node in the cluster, as described in Section 4.1.2. Ingress points, like ordinary actors, send

entries to their local GC and their local state only records information collected since the last entry

was sent.

To detect dropped messages between nodes, we use Puaut’s approach [40]. Each outgoing

message pipeline is instrumented with an egress point, which records the same data as ingress

points (Table 3) but for outgoing messages. Egress points periodically flush their entry to the ingress

point downstream. By comparing the number of messages sent by the egress point with the number

of messages admitted by the ingress point, one can deduce how many messages were dropped and

what references those messages contained.

5.3 An API for Actor GC
We created a version of Pekko’s API for managed actors, whose lifetime is controlled by an actor

GC. The API supports multiple GC backends, including preliminary implementations of CRGC

and weighted reference counting (WRC). We chose to make the API backwards-compatible, so

programmers can gradually migrate large codebases into the new API over time. This design raises

interesting challenges that any production-ready actor GC will need to overcome.

References. In actor languages like Erlang, Elixir, or Pony [14], the garbage collector can scan an

actor’s heap to find actor references. But Pekko is a library, so our API is implemented in userspace.

To track actor references when 𝑎 sends 𝑏 a reference to 𝑐 , we ask programmers to explicitly create
a new reference from 𝑏 to 𝑐 . When 𝑏 receives the reference, it uses the JVM’s PhantomReference
mechanism to detect when the reference is no longer needed. This design is vulnerable to bugs if

the programmer forgets to create a reference explicitly; researchers have proposed static analyses

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 185. Publication date: June 2025.



CRGC: Fault-Recovering Actor Garbage Collection in Pekko 185:19

and type systems to catch accidental sharing of data of this sort between actors [17, 24], but no

such system has yet been integrated into Pekko.

Monitoring. If actor 𝑎 monitors 𝑏 in Pekko, then 𝑎 will be notified if 𝑏 halted for any reason—

including normal termination. This is a paradox for cyclic garbage collectors like CRGC: the local

GC could identify a pair of quiescent actors 𝑎 and 𝑏 that monitor one another, but it could not

kill 𝑎 without waking up 𝑏 and vice versa. Changing the semantics of monitoring would break

backward-compatibility, so our implementation of CRGC does not collect this type of garbage.

Restarting. When an actor throws an uncaught exception, Pekko allows the actor to restart itself

and all its children. This is a problem for actor GCs because every actor in Pekko is descended from

some actor that could throw an exception; hence any garbage actor could become non-garbage

again because its ancestor forced a restart. We propose that instead of restarting its children, an

actor should spawn new children while the old ones are garbage collected. The net effect is the

same, except any other actor with references to an old child will need to obtain references to a new

child—e.g., by asking the parent.

6 Evaluation
Actor GC is a feature designed to reduce bugs and simplify programs. For a preliminary evaluation of

CRGC, we would therefore like to know the cost of this feature in terms of application performance.

We pose the following research questions:

RQ1. How does CRGC affect the performance of applications that do not need actor GC?

RQ2. How promptly does CRGC collect actor garbage?

RQ3. What is the network overhead of CRGC in a distributed application?

6.1 Savina Benchmarks
Savina is a multicore benchmark suite for actor frameworks [19], featuring microbenchmarks,

concurrency benchmarks, and parallelism benchmarks. Most of the benchmarks in Savina produce

no actor garbage at all, so the purpose of this evaluation is to measure the overhead of adding actor

GC to an application where it is not needed. We provide two baselines: (1) a baseline with actor GC

disabled, and (2) a baseline with weighted reference counting (WRC) [52], a simple and lightweight

acyclic GC.

Experimental setup. The experiments were conducted on a 2.10 GHz Intel Xeon Gold 6130

SMP node, allocated 8 vCPUs and 48 GB RAM, running Ubuntu 24.04 and OpenJDK Temurin

17. To minimize the effect of unpredictable JVM GC pauses and JIT warmup times, we ran each

benchmark for 20 iterations and six separate JVM invocations, and then filtered out the slowest 60%

of benchmark run times. Each JVM instance was given 16 GB heap and used ZGC, a low-latency

object garbage collector for the JVM. For each category of benchmarks, we computed the geometric

mean slowdown by normalizing execution times with respect to the baseline, taking the geometric

mean, and converting the result to a percentage value.

In the original Savina benchmarks, execution time included the time for all actors in the system

to terminate themselves. As remarked by Blessing et al. [9], this does not accurately reflect real actor

systems and unfairly penalizes garbage collectors that run less often than necessary. In the process

of porting the benchmarks to use our API, we therefore modified them to exclude termination time

from measurements.

Microbenchmarks and Concurrency. Savina’s microbenchmarks and concurrency benchmarks

measure basic actor operations, which are designed to be very cheap; hence we expect any overhead

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 185. Publication date: June 2025.



185:20 Dan Plyukhin, Gul Agha, and Fabrizio Montesi

Table 4. Savina benchmarks.

Average time (s) Average overhead (%)

Benchmark N
o
G
C

W
R
C

C
R
G
C
-b
lo
ck

C
R
G
C
-w

av
e

N
o
G
C
(s
td
ev
)

W
R
C

C
R
G
C
-b
lo
ck

C
R
G
C
-w

av
e

M
ic
ro
be

nc
hm

ar
ks

big 2.7 4.4 3.8 4.6 ±8 63 42 70

chameneos 1.7 1.8 1.7 2 ±11 6 2 14

count 1.6 1.6 1.7 2.7 ±10 -1 3 67

fib 0.1 0.11 0.14 0.15 ±5 7 35 45

fjcreate 1.3 1.6 1.4 1.3 ±2 23 4 1

fjthrput 0.39 0.93 0.77 1 ±23 141 99 167

pingpong 2.5 2.7 2.8 3 ±2 8 12 18

threadring 0.76 0.91 0.99 0.97 ±4 19 29 27

geomean 27 25 44

banking 0.091 0.11 0.13 0.13 ±6 20 47 45

C
on

cu
rr
en

cy

bndbuffer 0.55 0.56 0.58 0.57 ±1 1 4 2

cigsmok 0.12 0.13 0.12 0.12 ±11 8 -1 0

concdict 0.76 0.81 0.83 0.87 ±2 6 10 14

concsll 30 30 33 33 ±2 0 10 11

logmap 0.17 0.16 0.17 0.24 ±9 -6 1 45

philosopher 1.1 1.2 1.2 1.3 ±2 8 8 15

geomean 5 10 18

Pa
ra
ll
el
is
m

apsp 0.8 0.78 0.82 0.81 ±5 -1 3 1

astar 1.9 1.6 1.8 1.6 ±27 -12 -5 -11

bitonicsort 0.11 0.15 0.11 0.17 ±5 39 4 54

facloc 0.27 0.28 0.4 0.4 ±2 4 51 51

nqueenk 0.63 0.67 0.67 0.67 ±1 5 5 6

piprecision 0.12 0.13 0.13 0.13 ±2 0 0 0

quicksort 0.46 0.46 0.45 0.46 ±1 0 -1 0

radixsort 1.3 1.3 1.3 1.8 ±8 1 2 43

recmatmul 0.44 0.45 0.44 0.45 ±1 0 0 0

sieve 0.19 0.19 0.2 0.2 ±2 0 1 2

trapezoid 0.21 0.21 0.21 0.21 ±1 0 0 0

uct 0.16 0.2 0.19 0.19 ±7 25 22 19

geomean 4 6 12

at all to have an outsized impact on performance. We also found the microbenchmarks highly noisy.

For example, WRC performs poorly on fjthrput—but this benchmark measures the rate that a

manager sends tasks to a fixed team of workers, so reference counting should not be expected to

have a significant effect. Overall, there does not appear to be any consistent difference between

CRGC and WRC across these benchmarks.

Parallelism. The only parallel benchmark in which CRGC performs decidedly worse than WRC is

facloc. The benchmark features a “forwarding” behavior in which an actor 𝑎 receives a reference

to actor 𝑏, sends 𝑏 a message, and then deactivates the reference. Each forwarded reference requires

growing the “sent” field in 𝑎’s entry (Table 2), causing the GC to spend more time processing

entries. Some of these costs could be reduced by taking advantage of static typing information,

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 185. Publication date: June 2025.



CRGC: Fault-Recovering Actor Garbage Collection in Pekko 185:21

0 250 500 750 1000 1250 1500
Actor life time (ms)

0.0

0.5

1.0

C
D

F

CRGC
WRC
No GC

(a) Acyclic Garbage Only

0 250 500 750 1000 1250 1500
Actor life time (ms)

0.0

0.5

1.0

C
D

F

CRGC
WRC
No GC

(b) All Garbage

Fig. 12. CDFs plotting how long actors survive in the “torture test” configuration (shorter lifetimes are better).

17 Mb

170 Mb

7.3 Gb
280 Mb

49 Mb

99 Mb
34 Mb

8.5 Mb 31 Mb5.1 Mb 5.0 Mb 87 Mb
0

25

50

75

100

Torture test (small) Torture test (large) Streaming

D
at

a 
se

nt
 (

%
)

Application

Actor References

Shadows

Ingress

Fig. 13. Network overhead of CRGC three configurations of RandomWorkers.

like in Pony/Orca [14]. Without that information, we expect CRGC to have higher overhead in

applications that pass references more frequently.

6.2 RandomWorkers: A Configurable GC Benchmark
The Savina benchmarks are useful for measuring overhead, but they are not realistic applications

of CRGC because they are bound to a single node and they generate garbage in a predictable way.

An alternative benchmark called ChatApp has been proposed [9], but it suffers the same limitations.

We fill the gap with a new benchmark adapted from ChatApp, called RandomWorkers: a distributed
benchmark that generates garbage randomly and can be configured to model different workloads.

RandomWorkersmodels a team of nodes handling a stream of requests from some frontend. Each

node has a manager actor that can respond to requests by randomly (1) spawning a worker; (2)

acquainting a manager or worker with a set of workers; or (3) sending work to a worker. Workers

can also spawn workers and pass references.

RandomWorkers can be configured to model different applications. The benchmark can be made

more or less dynamic by changing the probability of spawning actors or passing references. If the

probability of passing references is zero, then all garbage has a tree topology. If the probability

of passing references to a remote actor is zero, then there is no distributed garbage. We can also

guarantee actor garbage is acyclic by imposing a lexicographic order on actor IDs, and ensuring

actors are never given references to targets with a “smaller” name.

We evaluated CRGC with respect to three configurations of the benchmark:

• Torture test (small messages): Application messages contain a payload of 0 to 50 bytes. When a

worker receives a message, the worker has a 30% chance of spawning or sending a reference.

Likewise, managers have a 50% chance of spawning a worker, a 50% chance of sending to a

remote actor, and a 70% chance of sending to a local worker.

• Torture test (large messages): As above, but the payload may be up to 5 KB.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 185. Publication date: June 2025.



185:22 Dan Plyukhin, Gul Agha, and Fabrizio Montesi

• Streaming: As above, but with a less dynamic topology: payload sizes up to 5 KB; workers do not

spawn or create references; managers have a 50% chance of sending a message to a remote actor

and a 70% chance of sending to a local worker, but only a 1% chance of spawning a worker.

6.2.1 Garbage Collection Rates. We evaluate how promptly CRGC collects garbage in the torture
test (small) configuration. To use WRC as a baseline, only acyclic garbage was generated. The

experiment ran on a single node and the JVM GC was triggered every second.

Figure 12a shows the distribution of actor survival times as a CDF. When actor GC is disabled,

an actor’s survival time depends only on the time it was spawned. The figure shows CRGC is

competitive with WRC, though lagging behind slightly; this is an expected result because reference

counting actors can stop themselves immediately, whereas CRGC actors must wait for the local

GC to trace the shadow graph. For completeness, Figure 12b shows the same experiment with

unrestricted reference-passing. Here WRC introduces a memory leak, and the experiment will crash

if left to run long enough; with CRGC, the experiment does not crash.

6.2.2 Network Overhead. We evaluate the network overhead of CRGC using three configurations

of the benchmark, executed on a 3-node cluster. Figure 13 breaks down total network usage by

cause. In torture test (small), CRGC adds nearly 20× overhead. However, 88% of this overhead is

taken up by actor references, which Pekko represents as fully qualified paths that take dozens of

bytes to serialize. When the payloads of application messages are larger and the number of actors

is smaller, CRGC imposes much less overhead; in Streaming, the overhead is less than 3%.

7 Conclusion
We presented a model for distributed actor systems with faults, and an actor GC that can collect

actor garbage resulting from those faults. Our approach is simple enough to be proven correct and

makes very few assumptions about the underlying implementation. We also implemented the actor

GC in Apache Pekko and found it to have modest overhead, comparable to much simpler and less

powerful approaches.

There is still work to be done before actor GCs can enter the mainstream. Our approach cannot be

used in Erlang or Elixir unless these languages implement a cluster membership protocol matching

the specification in Section 3. In actor libraries like Pekko and Akka, programmers will need

support from type systems or static analysis to prevent bugs caused by unintentionally sharing

actor references. Moreover, we will need to reevaluate how mechanisms like monitoring and

restarting should work when programmers can rely on actor GC instead.

Another topic for future work is tuning CRGC itself. We observed that “forwarding” actors can

add undue pressure to local garbage collection. CRGC’s use of bandwidth is not optimal either: nodes

broadcast all information about their local actors, even if those actors are not part of any distributed

cyclic garbage. Methods of summarizing a node’s heap have already been investigated [38, 44], but

will require a redesign to match CRGC’s approach.

Data Availability Statement
The TLA

+
specifications, Pekko implementation, and benchmarks for this article are available at

https://doi.org/10.5281/zenodo.15049131 [39].

Acknowledgments
Partially supported by Villum Fonden (grant no. 29518). Co-funded by the European Union (ERC,

CHORDS, 101124225). Views and opinions expressed are however those of the authors only and do

not necessarily reflect those of the European Union or the European Research Council. Neither the

European Union nor the granting authority can be held responsible for them.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 185. Publication date: June 2025.

https://doi.org/10.5281/zenodo.15049131


CRGC: Fault-Recovering Actor Garbage Collection in Pekko 185:23

References
[1] Gul Agha. 1990. ACTORS - A Model of Concurrent Computation in Distributed Systems. MIT Press, Cambridge, MA.

[2] Gul Agha. 1990. Concurrent Object-Oriented Programming. Commun. ACM 33, 9 (Sept. 1990), 125–141.

[3] Apache Software Foundation. 2025. Apache Pekko. https://pekko.apache.org/.

[4] Joe Armstrong. 2003. Making Reliable Distributed Systems in the Presence of Software Errors. Ph. D. Dissertation. Royal
Institute of Technology, Stockholm, Sweden.

[5] Mehdi Bagherzadeh, Nicholas Fireman, Anas Shawesh, and Raffi Khatchadourian. 2020. Actor Concurrency Bugs: A

Comprehensive Study on Symptoms, Root Causes, API Usages, and Differences. Proc. ACM Program. Lang. 4, OOPSLA,
Article 214 (Nov. 2020). doi:10.1145/3428282

[6] Di Bevan. 1987. Distributed Garbage Collection Using Reference Counting. In PARLE Parallel Architectures and
Languages Europe, G. Goos, J. Hartmanis, D. Barstow, W. Brauer, P. Brinch Hansen, D. Gries, D. Luckham, C. Moler,

A. Pnueli, G. Seegmüller, J. Stoer, N. Wirth, J. W. Bakker, A. J. Nijman, and P. C. Treleaven (Eds.). Vol. 259. Springer

Berlin Heidelberg, Berlin, Heidelberg, 176–187. doi:10.1007/3-540-17945-3_10

[7] A Birrell, D Evers, G Nelson, S Owicki, and G Wobber. 1993. Distributed Garbage Collection for Network Objects.
Technical Report 116. Digital Systems Research Center, 130 Lytton Avenue, Palo Alto, CA 94301.

[8] Sebastian Blessing. 2013. A String of Ponies: Transparent Distributed Programming with Actors. Master’s thesis. Imperial

College, London, United Kingdom.

[9] Sebastian Blessing, Kiko Fernandez-Reyes, Albert Mingkun Yang, Sophia Drossopoulou, and Tobias Wrigstad. 2019.

Run, Actor, Run: Towards Cross-Actor Language Benchmarking. In Proceedings of the 9th ACM SIGPLAN International
Workshop on Programming Based on Actors, Agents, and Decentralized Control - AGERE 2019. ACM Press, Athens,

Greece, 41–50. doi:10.1145/3358499.3361224

[10] Sergey Bykov, Alan Geller, Gabriel Kliot, James R. Larus, Ravi Pandya, and Jorgen Thelin. 2011. Orleans: Cloud

Computing for Everyone. In Proceedings of the 2nd ACM Symposium on Cloud Computing - SOCC ’11. ACM Press,

Cascais, Portugal, 1–14. doi:10.1145/2038916.2038932

[11] Tushar Deepak Chandra and Sam Toueg. 1996. Unreliable Failure Detectors for Reliable Distributed Systems. J. ACM
43, 2 (March 1996), 225–267. doi:10.1145/226643.226647

[12] K. Mani Chandy and Leslie Lamport. 1985. Distributed Snapshots: Determining Global States of Distributed Systems.

ACM Transactions on Computer Systems 3, 1 (Feb. 1985), 63–75. doi:10.1145/214451.214456
[13] Sylvan Clebsch and Sophia Drossopoulou. 2013. Fully Concurrent Garbage Collection of Actors on Many-Core

Machines. In Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems
Languages & Applications - OOPSLA ’13. ACM Press, Indianapolis, Indiana, USA, 553–570. doi:10.1145/2509136.2509557

[14] Sylvan Clebsch, Juliana Franco, Sophia Drossopoulou, Albert Mingkun Yang, Tobias Wrigstad, and Jan Vitek. 2017.

Orca: GC and Type System Co-Design for Actor Languages. Proceedings of the ACM on Programming Languages 1,
OOPSLA (Oct. 2017), 1–28. doi:10.1145/3133896

[15] Peter Dickman. 1996. Incremental, Distributed Orphan Detection and Actor Garbage Collection Using Graph Partition-

ing and Euler Cycles. In Distributed Algorithms, 10th International Workshop, WDAG ’96, Bologna, Italy, October 9-11,
1996, Proceedings (Lecture Notes in Computer Science, Vol. 1151), Özalp Babaoglu and Keith Marzullo (Eds.). Springer,

141–158. doi:10.1007/3-540-61769-8_10

[16] Hadoop S3A 2025. S3A Committers: Architecture and Implementation. https://hadoop.apache.org/docs/r3.1.0/hadoop-

aws/tools/hadoop-aws/committer_architecture.html.

[17] Philipp Haller and Alex Loiko. 2016. LaCasa: Lightweight Affinity and Object Capabilities in Scala. In Proceedings of
the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications.
ACM, Amsterdam Netherlands, 272–291. doi:10.1145/2983990.2984042

[18] Naohiro Hayashibara, Xavier Défago, Rami Yared, and Takuya Katayama. 2004. The Φ Accrual Failure Detector. In

23rd International Symposium on Reliable Distributed Systems (SRDS 2004), 18-20 October 2004, Florianpolis, Brazil. IEEE
Computer Society, 66–78. doi:10.1109/RELDIS.2004.1353004

[19] Shams M. Imam and Vivek Sarkar. 2014. Savina - An Actor Benchmark Suite: Enabling Empirical Evaluation of Actor

Libraries. In Proceedings of the 4th International Workshop on Programming Based on Actors Agents & Decentralized
Control - AGERE! ’14. ACM Press, Portland, Oregon, USA, 67–80. doi:10.1145/2687357.2687368

[20] Richard E. Jones, Antony L. Hosking, and J. Eliot B. Moss. 2011. The Garbage Collection Handbook: The Art of Automatic
Memory Management. CRC Press.

[21] D. Kafura, M. Mukherji, and D.M. Washabaugh. 1995. Concurrent and Distributed Garbage Collection of Active Objects.

IEEE Transactions on Parallel and Distributed Systems 6, 4 (April 1995), 337–350. doi:10.1109/71.372788
[22] Dennis G. Kafura, Douglas Washabaugh, and Jeff Nelson. 1990. Garbage Collection of Actors. In Conference on Object-

Oriented Programming Systems, Languages, and Applications / European Conference on Object-Oriented Programming,
OOPSLA/ECOOP 1990, Ottawa, Canada, October 21-25, 1990, Proceedings, Akinori Yonezawa (Ed.). ACM, 126–134.

doi:10.1145/97945.97961

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 185. Publication date: June 2025.

https://pekko.apache.org/
https://doi.org/10.1145/3428282
https://doi.org/10.1007/3-540-17945-3_10
https://doi.org/10.1145/3358499.3361224
https://doi.org/10.1145/2038916.2038932
https://doi.org/10.1145/226643.226647
https://doi.org/10.1145/214451.214456
https://doi.org/10.1145/2509136.2509557
https://doi.org/10.1145/3133896
https://doi.org/10.1007/3-540-61769-8_10
https://hadoop.apache.org/docs/r3.1.0/hadoop-aws/tools/hadoop-aws/committer_architecture.html
https://hadoop.apache.org/docs/r3.1.0/hadoop-aws/tools/hadoop-aws/committer_architecture.html
https://doi.org/10.1145/2983990.2984042
https://doi.org/10.1109/RELDIS.2004.1353004
https://doi.org/10.1145/2687357.2687368
https://doi.org/10.1109/71.372788
https://doi.org/10.1145/97945.97961


185:24 Dan Plyukhin, Gul Agha, and Fabrizio Montesi

[23] Tomio Kamada, Satoshi Matsuoka, and Akinori Yonezawa. 1994. Efficient Parallel Global Garbage Collection on

Massively Parallel Computers. In Proceedings Supercomputing ’94, Washington, DC, USA, November 14-18, 1994, Gary M.

Johnson (Ed.). IEEE Computer Society, 79–88. doi:10.1109/SUPERC.1994.344268

[24] Rajesh K. Karmani, Amin Shali, and Gul Agha. 2009. Actor frameworks for the JVM platform: a comparative analysis.

In Proceedings of the 7th International Conference on Principles and Practice of Programming in Java, PPPJ 2009, Calgary,
Alberta, Canada, August 27-28, 2009, Ben Stephenson and Christian W. Probst (Eds.). ACM, 11–20. doi:10.1145/1596655.

1596658

[25] Leslie Lamport. 1994. The Temporal Logic of Actions. ACM Transactions on Programming Languages and Systems 16, 3
(May 1994), 872–923. doi:10.1145/177492.177726

[26] Tanakorn Leesatapornwongsa, Jeffrey F. Lukman, Shan Lu, and Haryadi S. Gunawi. 2016. TaxDC: A Taxonomy of Non-

Deterministic Concurrency Bugs in Datacenter Distributed Systems. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and Operating Systems - ASPLOS ’16. ACM Press,

Atlanta, Georgia, USA, 517–530. doi:10.1145/2872362.2872374

[27] Lightbend. 2025. Akka. https://akka.io/.

[28] Lightbend. 2025. AkkaDocumentation: ClusterMembership Service. https://doc.akka.io/docs/akka/2.10.2/typed/cluster-

membership.html.

[29] Lightbend. 2025. Akka Documentation: Cluster Sharding. https://doc.akka.io/docs/akka/2.10.2/typed/cluster-sharding.

html.

[30] Lightbend. 2025. Akka Documentation: Message Delivery Reliability. https://doc.akka.io/docs/akka/2.10.2/general/

message-delivery-reliability.html.

[31] Friedemann Mattern. 1987. Algorithms for Distributed Termination Detection. Distributed Computing 2, 3 (Sept. 1987),

161–175. doi:10.1007/BF01782776

[32] Luc Moreau, Peter Dickman, and Richard E. Jones. 2005. Birrell’s Distributed Reference Listing Revisited. ACM Trans.
Program. Lang. Syst. 27, 6 (2005), 1344–1395. doi:10.1145/1108970.1108976

[33] MR-4099 2012. [MAPREDUCE-4099] ApplicationMaster May Fail to Remove Staging Directory - ASF JIRA. https:

//issues.apache.org/jira/browse/MAPREDUCE-4099.

[34] Orleans project authors. 2024. Activation Garbage Collection. https://github.com/dotnet/docs/blob/

0ba574212ac88fe70b590547384eae7a158d4527/docs/orleans/host/configuration-guide/activation-collection.md.

[35] José M. Piquer. 1991. Indirect Reference Counting: A Distributed Garbage Collection Algorithm. In Parle ’91 Parallel
Architectures and Languages Europe, Emile H. L. Aarts, Jan van Leeuwen, and Martin Rem (Eds.). Vol. 505. Springer

Berlin Heidelberg, Berlin, Heidelberg, 150–165. doi:10.1007/978-3-662-25209-3_11

[36] Dan Plyukhin and Gul Agha. 2018. Concurrent Garbage Collection in the Actor Model. In Proceedings of the 8th ACM
SIGPLAN International Workshop on Programming Based on Actors, Agents, and Decentralized Control - AGERE 2018.
ACM Press, Boston, MA, USA, 44–53. doi:10.1145/3281366.3281368

[37] Dan Plyukhin and Gul Agha. 2020. Scalable Termination Detection for Distributed Actor Systems. In 31st International
Conference on Concurrency Theory, CONCUR 2020, September 1-4, 2020, Vienna, Austria (Virtual Conference) (LIPIcs,
Vol. 171), Igor Konnov and Laura Kovács (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 11:1–11:23.

doi:10.4230/LIPIcs.CONCUR.2020.11

[38] Dan Plyukhin and Gul Agha. 2022. A Scalable Algorithm for Decentralized Actor Termination Detection. Log. Methods
Comput. Sci. 18, 1 (2022). doi:10.46298/lmcs-18(1:39)2022

[39] Dan Plyukhin, Gul Agha, and Fabrizio Montesi. 2025. CRGC: Fault-Recovering Actor Garbage Collection in Pekko

(Artifact). https://doi.org/10.5281/zenodo.15049131.

[40] Isabelle Puaut. 1994. A Distributed Garbage Collector for Active Objects. In PARLE’94 Parallel Architectures and
Languages Europe, Gerhard Goos, Juris Hartmanis, Costas Halatsis, Dimitrios Maritsas, George Philokyprou, and Sergios

Theodoridis (Eds.). Vol. 817. Springer Berlin Heidelberg, Berlin, Heidelberg, 539–552. doi:10.1007/3-540-58184-7_129

[41] Aleta M. Ricciardi and Kenneth P. Birman. 1991. Using Process Groups to Implement Failure Detection in Asynchronous

Environments. In Proceedings of the Tenth Annual ACM Symposium on Principles of Distributed Computing - PODC ’91.
ACM Press, Montreal, Quebec, Canada, 341–353. doi:10.1145/112600.112628

[42] Marc Shapiro, Peter Dickman, and David Plainfosse. 1993. SSP Chains : Robust, Distributed References Supporting

Acyclic Garbage Collection.

[43] Hans Svensson and Lars-Åke Fredlund. 2007. A More Accurate Semantics for Distributed Erlang. In Proceedings of the
2007 SIGPLAN Workshop on ERLANG Workshop. ACM, Freiburg Germany, 43–54. doi:10.1145/1292520.1292528

[44] Abhay Vardhan. 1998. Distributed Garbage Collection of Active Objects: A Transformation and Its Applications to Java
Programming. Master’s thesis. University of Illinois at Urbana-Champaign, Urbana, IL.

[45] Abhay Vardhan and Gul Agha. 2003. Using Passive Object Garbage Collection Algorithms for Garbage Collection of

Active Objects. ACM SIGPLAN Notices 38, 2 supplement (Feb. 2003), 106. doi:10.1145/773039.512443

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 185. Publication date: June 2025.

https://doi.org/10.1109/SUPERC.1994.344268
https://doi.org/10.1145/1596655.1596658
https://doi.org/10.1145/1596655.1596658
https://doi.org/10.1145/177492.177726
https://doi.org/10.1145/2872362.2872374
https://akka.io/
https://doc.akka.io/docs/akka/2.10.2/typed/cluster-membership.html
https://doc.akka.io/docs/akka/2.10.2/typed/cluster-membership.html
https://doc.akka.io/docs/akka/2.10.2/typed/cluster-sharding.html
https://doc.akka.io/docs/akka/2.10.2/typed/cluster-sharding.html
https://doc.akka.io/docs/akka/2.10.2/general/message-delivery-reliability.html
https://doc.akka.io/docs/akka/2.10.2/general/message-delivery-reliability.html
https://doi.org/10.1007/BF01782776
https://doi.org/10.1145/1108970.1108976
https://issues.apache.org/jira/browse/MAPREDUCE-4099
https://issues.apache.org/jira/browse/MAPREDUCE-4099
https://github.com/dotnet/docs/blob/0ba574212ac88fe70b590547384eae7a158d4527/docs/orleans/host/configuration-guide/activation-collection.md
https://github.com/dotnet/docs/blob/0ba574212ac88fe70b590547384eae7a158d4527/docs/orleans/host/configuration-guide/activation-collection.md
https://doi.org/10.1007/978-3-662-25209-3_11
https://doi.org/10.1145/3281366.3281368
https://doi.org/10.4230/LIPIcs.CONCUR.2020.11
https://doi.org/10.46298/lmcs-18(1:39)2022
https://doi.org/10.5281/zenodo.15049131
https://doi.org/10.1007/3-540-58184-7_129
https://doi.org/10.1145/112600.112628
https://doi.org/10.1145/1292520.1292528
https://doi.org/10.1145/773039.512443


CRGC: Fault-Recovering Actor Garbage Collection in Pekko 185:25

[46] Carlos Varela and Gul Agha. 2001. Programming Dynamically Reconfigurable Open Systems with SALSA. ACM
SIGPLAN Notices 36, 12 (Dec. 2001), 20–34. doi:10.1145/583960.583964

[47] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal, Mahadev Konar, Robert Evans, Thomas

Graves, Jason Lowe, Hitesh Shah, Siddharth Seth, Bikas Saha, Carlo Curino, Owen O’Malley, Sanjay Radia, Benjamin

Reed, and Eric Baldeschwieler. 2013. Apache Hadoop YARN: Yet Another Resource Negotiator. In Proceedings of the
4th Annual Symposium on Cloud Computing. ACM, Santa Clara California, 1–16. doi:10.1145/2523616.2523633

[48] Nalini Venkatasubramanian. 1992. Hierarchical Garbage Collection in Scalable Distributed Systems. Master’s thesis.

University of Illinois at Urbana-Champaign.

[49] Nalini Venkatasubramanian, Gul Agha, and Carolyn Talcott. 1992. Scalable Distributed Garbage Collection for

Systems of Active Objects. In Memory Management, Yves Bekkers and Jacques Cohen (Eds.). Vol. 637. Springer-Verlag,

Berlin/Heidelberg, 134–147. doi:10.1007/BFb0017187

[50] Wei-Jen Wang, Carlos Varela, Fu-Hau Hsu, and Cheng-Hsien Tang. 2010. Actor Garbage Collection Using Vertex-

Preserving Actor-to-Object Graph Transformations. In Advances in Grid and Pervasive Computing, David Hutchison,

Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz,

C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi, GerhardWeikum,

Paolo Bellavista, Ruay-Shiung Chang, Han-Chieh Chao, Shin-Feng Lin, and Peter M. A. Sloot (Eds.). Vol. 6104. Springer

Berlin Heidelberg, Berlin, Heidelberg, 244–255. doi:10.1007/978-3-642-13067-0_28

[51] Wei-Jen Wang and Carlos A. Varela. 2006. Distributed Garbage Collection for Mobile Actor Systems: The Pseudo

Root Approach. In Advances in Grid and Pervasive Computing, Yeh-Ching Chung and José E. Moreira (Eds.). Vol. 3947.

Springer Berlin Heidelberg, Berlin, Heidelberg, 360–372. doi:10.1007/11745693_36

[52] Paul Watson and Ian Watson. 1987. An Efficient Garbage Collection Scheme for Parallel Computer Architectures. In

PARLE Parallel Architectures and Languages Europe, G. Goos, J. Hartmanis, D. Barstow, W. Brauer, P. Brinch Hansen,

D. Gries, D. Luckham, C. Moler, A. Pnueli, G. Seegmüller, J. Stoer, N. Wirth, J. W. Bakker, A. J. Nijman, and P. C.

Treleaven (Eds.). Vol. 259. Springer Berlin Heidelberg, Berlin, Heidelberg, 432–443. doi:10.1007/3-540-17945-3_25

Received 2024-11-15; accepted 2025-03-06

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 185. Publication date: June 2025.

https://doi.org/10.1145/583960.583964
https://doi.org/10.1145/2523616.2523633
https://doi.org/10.1007/BFb0017187
https://doi.org/10.1007/978-3-642-13067-0_28
https://doi.org/10.1007/11745693_36
https://doi.org/10.1007/3-540-17945-3_25

	Abstract
	1 Introduction
	2 Related Work
	2.1 Acyclic GCs
	2.2 Cyclic GCs
	2.3 Virtual Actors and Passivation

	3 Model
	3.1 Actors
	3.2 Nodes
	3.3 Actor Garbage

	4 Fault-Recovering Actor Garbage Collection
	4.1 Garbage Collection with Collages
	4.2 Shadow Graphs and Undo Logs

	5 Implementation
	5.1 Diary Entries
	5.2 Ingress and Egress Points
	5.3 An API for Actor GC

	6 Evaluation
	6.1 Savina Benchmarks
	6.2 RandomWorkers: A Configurable GC Benchmark

	7 Conclusion
	Acknowledgments
	References

