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Actor Model
Actors are lightweight, stateful, async processes.

Used to build low-latency distributed systems (e.g. Riak, Discord, CouchDB).

Most popular frameworks (Erlang, Akka, Orleans) do not garbage collect actors.

Ordinary tracing GC techniques don’t work.

Other solutions don’t scale well.



Part I: Actors
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Part II: Garbage
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An actor is garbage if it can be destroyed without affecting system behavior.

If an actor could become unblocked, we shouldn’t collect it.

We want actors that are permanently blocked, aka terminated actors
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A is potentially acquainted with B if either:

a. A has a reference to B

b. there is an undelivered message to A that contains a reference to B
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A is potentially acquainted with B if either:

a. A has a reference to B

b. there is an undelivered message to A that contains a reference to B

A is called a potential inverse acquaintance of B
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Potential reachability is the reflexive transitive closure of 
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potentially reachable by an unblocked actor
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Related Work

○ Global snapshots
- Not incremental

○ SALSA: based on approximate snapshots
- High overhead

○ Pony: inspiration for this work
- Causal message delivery is expensive
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Detecting Terminated Actors

Q: How do you find an actor’s potential inverse acquaintances?

With contact tracing!

Q: How do you know if an actor has undelivered messages?

With message counts!

Q: How do you know the snapshots are consistent?

Magic!
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Case 1: info message arrives first
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Case 2: release message arrives first
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Part IV: Message Counts
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Part V: Termination Detection
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“Appear to be terminated”?

An actor is terminated if it is blocked…
and its potential inverse acquaintances are blocked…

and their potential inverse acquaintances are blocked…
and so on.



“Appear to be terminated”?

Let S be a set of snapshots.

Assume B is the first actor in S to take a snapshot.
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If B has no facts Created(x : A ⊸ B) then it has no potential 
inverse acquaintances (see paper).
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“Appear to be terminated”?

Assuming B is blocked, show that the next actor
is also blocked.

Hence every actor that can potentially reach B is blocked!
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