
Scalable Termination Detection for
Distributed Actor Systems

Dan Plyukhin and Gul Agha
UIUC

Actor Model
Actors are lightweight, stateful, async processes.

Used to build low-latency distributed systems (e.g. Riak, Discord, CouchDB).

Most popular frameworks (Erlang, Akka, Orleans) do not garbage collect actors.

Ordinary tracing GC techniques don’t work.

Other solutions don’t scale well.

Part I: Actors

Idle actor

Messagem

m

Idle actor

Messagem

Once an idle actor receives a
message, it becomes busy.

m

Idle actor

Messagem

Once an idle actor receives a
message, it becomes busy.

Idle

Message

Busy

m

Once an idle actor receives a
message, it becomes busy.

A busy actor can…

Idle

Message

Busy

m

Once an idle actor receives a
message, it becomes busy.

A busy actor can…

- spawn actors...
A

Idle

Message

Busy

Reference

m

Once an idle actor receives a
message, it becomes busy.

A busy actor can…

- spawn actors...
A

B

Idle

Message

Busy

Reference

m

Once an idle actor receives a
message, it becomes busy.

A busy actor can…

- spawn actors...
A

B

Idle

Message

Busy

Reference

m

C

Once an idle actor receives a
message, it becomes busy.

A busy actor can…

- spawn actors...
- send async messages...

A

B

Idle

Message

Busy

Reference

m

C

Once an idle actor receives a
message, it becomes busy.

A busy actor can…

- spawn actors...
- send async messages...

A

B

“h
ell

o”

Idle

Message

Busy

Reference

m

C

Once an idle actor receives a
message, it becomes busy.

A busy actor can…

- spawn actors...
- send async messages...

A

B

“h
ell

o”

sayHello(A)

Idle

Message

Busy

Reference

m

C

A

Once an idle actor receives a
message, it becomes busy.

A busy actor can…

- spawn actors...
- send async messages...

B

Idle

Message

Busy

Reference

m

“h
ell

o”

C

A

Once an idle actor receives a
message, it becomes busy.

A busy actor can…

- spawn actors...
- send async messages...
- update its local state...

Idle

Message

Busy

Reference

m

“h
ell

o”

B

C

A

Once an idle actor receives a
message, it becomes busy.

A busy actor can…

- spawn actors...
- send async messages...
- update its local state...

Idle

Message

Busy

Reference

m

“h
ell

o”

B

C

A

Once an idle actor receives a
message, it becomes busy.

A busy actor can…

- spawn actors...
- send async messages...
- update its local state...

Idle

Message

Busy

Reference

m

“h
ell

o”

B

C

“h
ell

o”

A

Once an idle actor receives a
message, it becomes busy.

A busy actor can…

- spawn actors...
- send async messages...
- update its local state...
- perform effects...

Idle

Message

Busy

Reference

m

B

C

“h
ell

o”

A

Once an idle actor receives a
message, it becomes busy.

A busy actor can…

- spawn actors...
- send async messages...
- update its local state...
- perform effects...

Idle

Message

Busy

Reference

m

B

C

“h
ell

o”

A

Once an idle actor receives a
message, it becomes busy.

A busy actor can…

- spawn actors...
- send async messages...
- update its local state...
- perform effects...

Idle

Message

Busy

Reference

m

B

C

“h
ell

o”

A

Once an idle actor receives a
message, it becomes busy.

A busy actor can…

- spawn actors...
- send async messages...
- update its local state...
- perform effects...

...before becoming idle again.

Idle

Message

Busy

Reference

m

B

C

“h
ell

o”

A

Once an idle actor receives a
message, it becomes busy.

A busy actor can…

- spawn actors...
- send async messages...
- update its local state...
- perform effects...

...before becoming idle again.

Idle

Message

Busy

Reference

m

B

C

“h
ell

o”

A

Idle

Message

Busy

Reference

m

B

An actor is unblocked if:

a. it is busy, or

b. it has undelivered messages.

C

“h
ell

o”

A

C

Idle

Message

Busy

Reference

m

B

An actor is unblocked if:

a. it is busy, or

b. it has undelivered messages.

Part II: Garbage

An actor is garbage if it can be destroyed without affecting system behavior.

An actor is garbage if it can be destroyed without affecting system behavior.

If an actor could become unblocked, we shouldn’t collect it.

An actor is garbage if it can be destroyed without affecting system behavior.

If an actor could become unblocked, we shouldn’t collect it.

We want actors that are permanently blocked, aka terminated actors

Is X terminated?

Idle

Message

Busy

Reference

m

C

B X

D
A

Yes.

Is X terminated?

Idle

Message

Busy

Reference

m

C

B X

D
A

Yes.

Is X terminated?

Idle

Message

Busy

Reference

m

C

B X

D

Possibly not!

A

So X is terminated if all actors that
can “reach” it are blocked?

So X is terminated if all actors that
can “reach” it are blocked?

Not so fast!

Idle

Busy

Reference

Messagem

A

C

B X

D

E
sayHello(X)

Is X terminated?

Possibly not.

A is potentially acquainted with B if either:

a. A has a reference to B

b. there is an undelivered message to A that contains a reference to B

A B

A B

Idle

Busy

Reference

Messagem

sayHello(B)

A is potentially acquainted with B if either:

a. A has a reference to B

b. there is an undelivered message to A that contains a reference to B

A is called a potential inverse acquaintance of B

A B

A B

Idle

Busy

Reference

Messagem

sayHello(B)

Potential reachability is the reflexive transitive closure of
the potential acquaintance relation

A B C D

sayHello
(B)

sayHello
(C

)

sayHello
(D

)

Idle

Busy

Reference

Messagem

Potential reachability is the reflexive transitive closure of
the potential acquaintance relation

B C D

sayHello
(C

)

sayHello
(D

)
A

Idle

Busy

Reference

Messagem

Potential reachability is the reflexive transitive closure of
the potential acquaintance relation

C D

sayHello
(D

)
A B

Idle

Busy

Reference

Messagem

Potential reachability is the reflexive transitive closure of
the potential acquaintance relation

A B C D

Idle

Busy

Reference

Messagem

Idle

Busy

Reference

Messagem

A

C

B X

D

E
sayHello(X)

X may not be terminated if it is
potentially reachable by an unblocked actor

C

B X

D
A

C

B X

D

A

X is terminated if it is
potentially reachable only by blocked actors

Idle

Busy

Reference

Messagem

Related Work

○ Global snapshots
- Not incremental

○ SALSA: based on approximate snapshots
- High overhead

○ Pony: inspiration for this work
- Causal message delivery is expensive

Demo

Actor

Reference

Messagem

Actor

Reference

Message

Knowledge

m

...

...

...

...

... ...

...

...

...

...

...

...

...

... ...

...

...

...

...

Actor

Reference

Message

Knowledge

Aggregator

m

...

...

...

...

... ...

...

...

...

...

snapshot(.
..)

Actor

Reference

Message

Knowledge

Aggregator

m

...

...

...

...

... ...

...

...

...

...

snapshot(.
..)

snapshot(...)

Actor

Reference

Message

Knowledge

Aggregator

m

...

...

...

...

... ...

...

...

...

...

...

...
...

Actor

Reference

Message

Knowledge

Aggregator

m

...

...

...

...

... ...

...

...

...

...

...

...
...

Actor

Reference

Message

Knowledge

Aggregator

m

...

...

...

...

... ...

...

...

...

...

...

self
-destr

uct()

Actor

Reference

Message

Knowledge

Aggregator

m

...

...

...

...

...

...

...

Actor

Reference

Message

Knowledge

Aggregator

m

...

... ...

...

...

...

...

...

Actor

Reference

Message

Knowledge

Aggregator

m

...

... ...

...

...

...

...

...

Actor

Reference

Message

Knowledge

Aggregator

m

...

... ...

...

...

...

...

...

... ...

...

Actor

Reference

Message

Knowledge

Aggregator

m

...

... ...

...

...

...

...

...

... ...

...

Actor

Reference

Message

Knowledge

Aggregator

m

...

... ...

...

...

...

...

...

...

Actor

Reference

Message

Knowledge

Aggregator

m

...

...

...

...

...

...

...

Actor

Reference

Message

Knowledge

Aggregator

m

...

Detecting Terminated Actors

Detecting Terminated Actors

Q: How do you find an actor’s potential inverse acquaintances?

Q: How do you know if an actor has undelivered messages?

Q: How do you know the snapshots are consistent?

Detecting Terminated Actors

Q: How do you find an actor’s potential inverse acquaintances?

With contact tracing!

Q: How do you know if an actor has undelivered messages?

Q: How do you know the snapshots are consistent?

Detecting Terminated Actors

Q: How do you find an actor’s potential inverse acquaintances?

With contact tracing!

Q: How do you know if an actor has undelivered messages?

With message counts!

Q: How do you know the snapshots are consistent?

Detecting Terminated Actors

Q: How do you find an actor’s potential inverse acquaintances?

With contact tracing!

Q: How do you know if an actor has undelivered messages?

With message counts!

Q: How do you know the snapshots are consistent?

Magic!

Part III: Contact Tracing

Contact Tracing

- Actors must use reference objects (refobs) instead of ordinary references
- Refobs are denoted (x : A ⊸ B), where x is a globally unique token
- Can only be used by the owner A to send messages to the target B
- Must be deactivated when no longer needed
- Actor gets a refob when it spawns a child
- If A has (x : A ⊸ B) and (y : A ⊸ C) then A can create (z : C ⊸ B)

Contact Tracing

○ Actors must use reference objects (refobs) instead of ordinary references
○ Refobs are denoted (x : A ⊸ B), where x is a globally unique token
○ Can only be used by the owner A to send messages to the target B
○ Must be deactivated when no longer needed
○ Actor gets a refob when it spawns a child
○ If A has (x : A ⊸ B) and (y : A ⊸ C) then A can create (z : C ⊸ B)

A

B

C
x

y

A

Idle

Busy

Reference

Message

Knowledge

m

...

...

A

B

Idle

Busy

Reference

Message

Knowledge

m

...

Active(x : A ⊸ B)
...

Created(x : A ⊸ B)

x

A

B

Idle

Busy

Reference

Message

Knowledge

m

...

Active(x)
...

Created(x)

x

A

B

C
y

Idle

Busy

Reference

Message

Knowledge

m

...

Created(y)

x

Created(x)

Active(x)
Active(y)
...

A

B

C
y

Idle

Busy

Reference

Message

Knowledge

m

...

Created(y)

x

Created(x)

Active(x)
Active(y)
...

A

B

C
y

Idle

Busy

Reference

Message

Knowledge

m

...

Created(y)

x

Created(x)

Active(x)
Active(y)
CreatedUsing(x, z)
...

msg(z : C ⊸ B)

A

B

C
y

Idle

Busy

Reference

Message

Knowledge

m

...

Active(x)
Active(y)
CreatedUsing(x, z)
...

x z

Created(x)

Created(y)
Active(z)

A

B

C
y

Idle

Busy

Reference

Message

Knowledge

m

...

Active(x)
Active(y)
CreatedUsing(x, z)
...

x z

Created(x)

Created(y)
Active(z)

info(z : C ⊸ B)

A

B

C
y

Idle

Busy

Reference

Message

Knowledge

m

...

Active(x)
Active(y)
...

x

Created(x)

Created(y)
Active(z)

info(z : C ⊸ B) release(z : C ⊸ B)

Case 1: info message arrives first

A

B

C
y

Idle

Busy

Reference

Message

Knowledge

m

...

Active(x)
Active(y)
...

x

Created(x)

Created(y)

info(z : C ⊸ B) release(z : C ⊸ B)

A

B

C
y

Idle

Busy

Reference

Message

Knowledge

m

...

Active(x)
Active(y)
...

x

Created(x)
Created(z)

Created(y)

release(z : C ⊸ B)

A

B

C
y

Idle

Busy

Reference

Message

Knowledge

m

...

Active(x)
Active(y)
...

x

Created(x)
Created(z)

Created(y)

Case 2: release message arrives first

A

B

C
y

Idle

Busy

Reference

Message

Knowledge

m

...

Active(x)
Active(y)
...

x

Created(x)

Created(y)

info(z : C ⊸ B) release(z : C ⊸ B)

A

B

C
y

Idle

Busy

Reference

Message

Knowledge

m

...

Active(x)
Active(y)
...

x

Created(y)

info(z : C ⊸ B)

Created(x)
Released(z)

A

B

C
y

Idle

Busy

Reference

Message

Knowledge

m

...

Active(x)
Active(y)
...

x

Created(y)

Created(x)
Released(z)

Part IV: Message Counts

A B

Idle

Busy

Reference

Message

Knowledge

m

...

msg(x : A ⊸ B)

A B

Idle

Busy

Reference

Message

Knowledge

m

...

x

Active(x)
...

B

Idle

Busy

Reference

Message

Knowledge

m

...

x

Active(x)
Sent(x, 1)
...

msg(x, “hi”)

A

B

Idle

Busy

Reference

Message

Knowledge

m

...

x

Active(x)
Sent(x, 1)
...

...
Received(x, 1)
...

A

B

Idle

Busy

Reference

Message

Knowledge

m

...

x

Active(x)
Sent(x, 2)
...

...
Received(x, 1)
...

A

info(x, y)

B

Idle

Busy

Reference

Message

Knowledge

m

...

x

Active(x)
Sent(x, 2)
...

...
Received(x, 2)
...

A

B

Idle

Busy

Reference

Message

Knowledge

m

...

x

Active(x)
Sent(x, 2)
...

...
Received(x, 2)
...

A

A B

Idle

Busy

Reference

Message

Knowledge

m

...

Active(x)
Sent(x, 2)
...

...
Received(x, 2)
...

release(x)

A B

Idle

Busy

Reference

Message

Knowledge

m

...

...
Received(x, 2)
...

release(x)

...

A B

Idle

Busy

Reference

Message

Knowledge

m

...

...

...
Received(x, 2)
...

A B

Idle

Busy

Reference

Message

Knowledge

m

...

... ...

Part V: Termination Detection

“Appear to be terminated”?

“Appear to be terminated”?

An actor is terminated if it is blocked…
and its potential inverse acquaintances are blocked…

and their potential inverse acquaintances are blocked…
and so on.

“Appear to be terminated”?

Let S be a set of snapshots.

Assume B is the first actor in S to take a snapshot.

“Appear to be terminated”?

B ...

Idle

Busy

Reference

Message

Knowledge

m

...

“Appear to be terminated”?

B ...

Idle

Busy

Reference

Message

Knowledge

m

...

If B has no facts Created(x : A ⊸ B) then it has no potential
inverse acquaintances (see paper).

“Appear to be terminated”?

B

Created(x : A ⊸ B)
Received(x, 5)
...

Idle

Busy

Reference

Message

Knowledge

m

...

“Appear to be terminated”?

B

Created(x : A ⊸ B)
Received(x, 5)
...

Idle

Busy

Reference

Message

Knowledge

m

...

To find out if B is terminated, we need a snapshot from A.

“Appear to be terminated”?

A

Bx

Idle

Busy

Reference

Message

Knowledge

m

...

Created(x : A ⊸ B)
Received(x, 5)
...

To find out if B is terminated, we need a snapshot from A.

“Appear to be terminated”?

A

Bx

Idle

Busy

Reference

Message

Knowledge

m

...

Created(x : A ⊸ B)
Received(x, 5)
...

What if A’s snapshot doesn’t contain Active(x)?

...

“Appear to be terminated”?

A

B

msg(x)

Idle

Busy

Reference

Message

Knowledge

m

...

Created(x : A ⊸ B)
Received(x, 5)
...

What if A’s snapshot doesn’t contain Active(x)?

Case 1: It hasn’t received x yet.

...

“Appear to be terminated”?

A

B

release(x)

Idle

Busy

Reference

Message

Knowledge

m

...

Created(x : A ⊸ B)
Received(x, 5)
...

What if A’s snapshot doesn’t contain Active(x)?

Case 1: It hasn’t received x yet.

Case 2: It has released x already.

...

“Appear to be terminated”?

A

B

release(x)

Idle

Busy

Reference

Message

Knowledge

m

...

Created(x : A ⊸ B)
Received(x, 5)
...

What if A’s snapshot doesn’t contain Active(x)?

Case 1: It hasn’t received x yet.

Case 2: It has released x already.

Then B is not terminated!
...

“Appear to be terminated”?

A

Bx

Idle

Busy

Reference

Message

Knowledge

m

...

Created(x : A ⊸ B)
Received(x, 5)
...

B is only terminated if…

- A’s snapshot contains Active(x).

Active(x)
...

“Appear to be terminated”?

A

Bx

Idle

Busy

Reference

Message

Knowledge

m

...

Created(x : A ⊸ B)
Received(x, 5)
...

What if the message counts differ?

Active(x)
Sent(x, 6)
...

“Appear to be terminated”?

A

Bx

Idle

Busy

Reference

Message

Knowledge

m

...

Created(x : A ⊸ B)
Received(x, 5)
...

What if the message counts differ?

Recall B’s snapshot came first.

So at some point B became unblocked.Active(x)
Sent(x, 6)
...

msg(x, ...)

“Appear to be terminated”?

A

Bx

Idle

Busy

Reference

Message

Knowledge

m

...

Created(x : A ⊸ B)
Received(x, 5)
...

B is only terminated if…

- A’s snapshot contains Active(x);

- Their send and receive counts agree.Active(x)
Sent(x, 5)
...

“Appear to be terminated”?

A

Bx

Idle

Busy

Reference

Message

Knowledge

m

...

Created(x : A ⊸ B)
Received(x, 5)
...

What if A created a new refob y : C ⊸ B before snapshot?

sayHello(_, y : C ⊸ B)
Active(x)
Sent(x, 5)
...

“Appear to be terminated”?

A

Bx

Idle

Busy

Reference

Message

Knowledge

m

...

Created(x : A ⊸ B)
Received(x, 5)
...

What if A created a new refob y : C ⊸ B before snapshot?

Then A created a fact CreatedUsing(x, y).

sayHello(_, y : C ⊸ B)
Active(x)
Sent(x, 5)
CreatedUsing(x, y)
...

“Appear to be terminated”?

A

Bx

Idle

Busy

Reference

Message

Knowledge

m

...

Created(x : A ⊸ B)
Received(x, 5)
...

What if A created a new refob y : C ⊸ B before snapshot?

Then A created a fact CreatedUsing(x, y).

Could A forget it?Active(x)
Sent(x, 5)
CreatedUsing(x, y)
...

info(x, y)

“Appear to be terminated”?

A

Bx

Idle

Busy

Reference

Message

Knowledge

m

...

Created(x : A ⊸ B)
Received(x, 5)
...

What if A created a new refob y : C ⊸ B before snapshot?

Then A created a fact CreatedUsing(x, y).

Could A forget it? Not without changing the send count!Active(x)
Sent(x, 6)
CreatedUsing(x, y)
...

info(x, y)

“Appear to be terminated”?

A

Bx

Idle

Busy

Reference

Message

Knowledge

m

...

Created(x : A ⊸ B)
Received(x, 5)
...

B is only terminated if…

○ A’s snapshot contains Active(x);

○ Their send and receive counts agree.

Now we need a snapshot from C...

Active(x)
Sent(x, 5)
CreatedUsing(x, y)
...

“Appear to be terminated”?

Assuming B is blocked, show that the next actor
is also blocked.

“Appear to be terminated”?

Assuming B is blocked, show that the next actor
is also blocked.

Hence every actor that can potentially reach B is blocked!

This work was supported in part by the National Science Foundation under Grant
No. SHF 1617401, and in part by the Laboratory Directed Research and
Development program at Sandia National Laboratories, a multi-mission laboratory
managed and operated by National Technology and Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract
DE-NA0003525.

Thanks also to Dipayan Mukherjee, Atul Sandur, Charles Kuch, Jerry Wu, Emily
Hutchinson, and the anonymous referees for their valuable feedback.

Acknowledgments

