
Concurrent Garbage Collection in the Actor Model
Dan Plyukhin

University of Illinois at Urbana-Champaign

Urbana, IL, USA

daniilp2@illinois.edu

Gul Agha

University of Illinois at Urbana-Champaign

Urbana, IL, USA

agha@illinois.edu

Abstract
In programming languages where memory may be allocated

dynamically, automatic garbage collection (GC) can improve

the efficiency of program execution while preventing pro-

gram errors caused by incorrectly removed memory loca-

tions. In actor systems, GC poses some challenges that make

it much costlier than in the sequential setting: Besides ref-

erences from reachable actors, we have to consider inverse

references from potentially active actors to reachable actors.

One proposal, adopted in the runtime for the actor program-

ming language Pony, uses causal message delivery and a

centralized detection algorithm. While this is efficient in

a multicore setting, the solution is too expensive for a dis-

tributed actor runtime. In this work, we show how the causal

order message delivery requirement may be removed. Specif-

ically, we describe a tracing collector of distributed actor

garbage with centralized and decentralized variants. Both

are guaranteed not to collect any non-garbage actors (safety)

and to eventually collect all garbage actors (liveness).

CCSConcepts •Computingmethodologies→Concur-
rent algorithms;

Keywords garbage collection, distributed systems

ACM Reference Format:
Dan Plyukhin and Gul Agha. 2018. Concurrent Garbage Collection

in the Actor Model. In Proceedings of the 8th ACM SIGPLAN Inter-
national Workshop on Programming Based on Actors, Agents, and
Decentralized Control (AGERE ’18), November 5, 2018, Boston, MA,
USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3281366.3281368

1 Introduction
In programs that use dynamic memory by creating objects

at runtime, Garbage Collection (GC) of those objects that are

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

AGERE ’18, November 5, 2018, Boston, MA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6066-1/18/11. . . $15.00

https://doi.org/10.1145/3281366.3281368

no longer reachable can improve performance by freeing up

memory. However, asking programmers to explicitly deallo-

cate memory leads to two problems: One might introduce

inefficiency in execution by failing to free up unused mem-

ory, and one might also introduce runtime errors by freeing

memory of objects still in use by parts of the application.

Automating GC makes it possible to avoid these problems.

In this paper, we consider the problem of automatic GC

in distributed actor systems [2].

Standard tracing techniques like mark-and-sweep, while

successful in sequential languages, are not immediately ap-

plicable to actors because tracing the objects reachable from

a fixed “root set” is insufficient for finding all live (i.e. non-

garbage) actors. For example, a worker continuously logging

messages to the console is clearly not garbage, but may not

be reachable from any other actor. It follows that a tracing

approach requires determining both outgoing and incoming
references to each actor, but it is not obvious how to do so ef-

ficiently; previous work like [15] used inverse acquaintance

lists, which proved expensive to maintain.

A successful alternative approach targeting multicore sys-

tems is Pony’s Message-based Actor Collection (MAC) [5],

which can be implemented with actors and no synchroniza-

tion requirements, while remaining competitive with imple-

mentations that offer no actor GC at all. MAC employs two

forms of GC:

1. Deferred reference counting enables an actor A to de-

tect when no other actor knows A’s name. Once that

occurs, A must be garbage because it cannot receive

any further messages.

2. Centralized cycle detection detects all other forms of

actor garbage, such as where two actors know one

another’s names but neither has any work to do.

This latter part depends on causal message delivery: If actor
A sends a messagem to actor B and subsequently sendsm′

to C , thenm′
must be delivered afterm.

While causal message delivery can be implemented effi-

ciently on multicore architectures, it decreases concurrency

and incurs a significant additional cost to be added to a dis-

tributed system [4, 12]. In addition, all cycle detection in

MAC is performed by a single actor, which is potentially a

bottleneck.

The purpose of the present work is to show how both

these problems can be solved by replacing causal cycle-

confirmation protocol described above with an unordered

protocol that does not require confirmation messages. Our

44

https://doi.org/10.1145/3281366.3281368
https://doi.org/10.1145/3281366.3281368
https://doi.org/10.1145/3281366.3281368

AGERE ’18, November 5, 2018, Boston, MA, USA Dan Plyukhin and Gul Agha

scheme requires very few additional messages to the appli-

cation and makes constraints on message ordering or the

activity of actors during garbage collection.

The layout of the paper is as follows: In Section 2 we define

our formal model for actors and actor garbage. Section 3

introduces the notion of a reference tracking scheme (RTS) and
its challenges in a distributed setting. Section 4 introduces

a novel low-overhead distributed RTS, which is necessary

for the presentation and proof of our complete GC system

in Section 5. We discuss our approach in Section 6, present

related work in Section 7, and briefly describe several future

research directions in Section 8.

2 Model
All our terms – including, crucially, the definition of actor

garbage – will be given in relation to an abstract actor sys-

tem, similar to [1], described below. In particular, notions

of migration and the “location” of an actor will not be nec-

essary because garbage detection takes place at the actor

level. Consequently, our work should be applicable to any

system implementing the actor abstraction, independent of

migration capabilities.

Garbage collection of shared passive data structures is

outside the scope of our paper, since we assume actors share

no state. However, we suggest how it could be integrated

into our scheme in Section 6.3 by modeling objects as actors.

Actors An actor (denoted A,B,C, . . .) is a stateful sequen-
tial processing entity with the capacity to spawn new actors,

which can execute concurrently. Actors do not share state,

and instead communicate by sending asynchronous mes-

sages to their target’s globally unique actor name (denoted
here by the lowercase a : A). These messages are buffered at

their target’s mailbox and processed one at a time. Actors

are purely reactive, and only ever perform computations

in response to a message. Thus, each message handler is

guaranteed to access the actor’s state in isolation with no

low-level data races.

Most implementations ensure that messages from an actor

A to an actor B are delivered in FIFO order. We will assume

this holds in our model as well for simplicity, and then show

how to easily lift the requirement in Section 6.

It is said that A is acquainted with B if A knows B’s actor
name (even if B does not know A’s name). Actors initially

only know their own names and those provided as arguments

to their constructor. Subsequently, the onlyway forA to learn

new names is by creating an actorC , at which point it learns

c : C , or by receiving names in a message.

Loosely speaking, an actor configuration is the state of the

system, from some point of view, at a particular point in time

[1]. The topology induced by a configuration is a directed

graph, where nodes correspond to actors and there is an

edge from A to B if and only if A is acquainted with B.

Garbage Actors Our definition of garbage (see Fig. 1) is

based on that of [15], with some careful modifications.

1. We say thatA can reach B ifA is B orA has an acquain-

tanceA′
that can reach B. Reachability is therefore the

transitive closure of the acquaintance relation, with

reflexivity because we assume that an actor can always

send messages to itself.

2. An actor is a root if it can communicate directly with

the outside world. Examples include actors represent-

ing users, the console, or a database connection.

3. An actor is blocked when it is not executing and has

no unprocessed messages (including those in transit);

it becomes unblocked as soon as a new message is sent

to it.

4. An actor is potentially unblocked if it is reachable from

an unblocked actor. Otherwise, it is quiescent.
5. An actor is live if it is in the root set, is reachable from

a live actor, or is potentially unblocked and can reach a

live actor.

6. An actor is garbage if it is not live; notice that once an
actor becomes garbage, it remains so for the remainder

of its lifetime.

Figure 1. Diagram, taken from [15], indicating when an

actor is garbage. Actor 2 is live because it is reachable from

the root; Actors 3 and 8 are live because they can reach a live

actor. Although Actor 6 is potentially unblocked, it cannot

reach a live actor and is therefore garbage.

A garbage detection algorithm is said to be sound if it

only ever returns true garbage actors, and complete if every
garbage actor is eventually detected. A garbage collection

(GC) scheme is sound and complete if and only if its under-

lying garbage detection algorithm is sound and complete.

The creators of the SALSA 1.0 garbage collector remark

that, in practice, every actor has a reference to the root set

because it can, for example, write to the console [15]. It

follows that every potentially unblocked actor in such a

system is in fact live, and so garbage collection is reduced to

the detection of quiescent sets. This argument, called the Live
Unblocked Actor Principle (LUAP), is also (tacitly) assumed

by MAC [5].

We contend that LUAP is too pessimistic, as most actors

never need to directly affect the world because they are

45

Concurrent Garbage Collection in the Actor Model AGERE ’18, November 5, 2018, Boston, MA, USA

merely helpers to the live actors. For example, consider how

a cyclic distributed hash table made up of actors might al-

ways be potentially unblocked because it is rebalancing or

replicating data for fault-tolerance purposes. Such a data

structure would never be reclaimed, even if unreachable

from the live set, because it’s never quiescent. We therefore

will not assume LUAP, and propose that users distinguish

which actors have have a reference to the root set with, say,

an IOActor trait.

3 References
The foundation of our garbage detection algorithm is proac-
tive reference tracking, which is an instance of a distributed

reference tracking scheme (RTS) for actors.

Reference Tracking A reference tracking scheme (RTS) is
a sound but incomplete GC that enables every actor B to

determine:

1. When no other actor knows B’s name, and

2. When there are no undelivered messages to B.

Actors meeting conditions (1) and (2) are quiescent garbage,

and may therefore safely destroy themselves.

An RTS detects these conditions by assuming that actors

only communicate by means of references. A reference x :

A → B is an abstract data type that can only be used by its

designated owner A to send messages to a target B. After A
no longer needs to send messages to B, the reference x must

be released, as defined below. We say that A is the (unique)

owner of x and that A is a (not necessarily unique) owner of

B.
Thus we have two basic requirements:

Requirement 0: Actor A can only send a message to actor B
if A possesses an unreleased reference to B.
Requirement 1: The owner A of a reference to B must even-
tually release that reference after it no longer needs to send
messages to B.
An RTS implementation must therefore define:

1. How to share references: Given that A possesses x :

A → B and y : A → C , how can it create z : C → B so

that C can access B?
2. How to release references: The RTS must specify a re-

lease protocol for informing the target when references

are destroyed.

Note that an actor can simultaneously possess multiple

distinct references to the same target, for example if A sends

y : C → B to C and some D concurrently sends z : C →

B. Thus y, z are not “merged” at C , and each one must be

independently released.

Finally, actor creation must also be modified by the RTS,

so as to return a reference instead of a mere actor name.

Naïve Reference Counting Before delving into proactive

reference tracking, let us briefly digress to show what kinds

of race conditions we mean to avoid. Below we define the

simple asynchronous reference counting RTS, which is sound

in causal multicore systems but not in our model [11].

In reference counting approaches, a reference is simply an

actor name with a designated owner. Actors initially have

an integer reference count initialized to 1, and must handle

the following messages for the release protocol:

• inc(): Increment local reference count.

• dec(): Decrement local reference count; if it fell to 0,

then release all references and destroy this actor.

Finally, the following methods show how to create and re-

lease references:

• create_ref(x : A → B, y : A → C): Send an inc

message to B and return b : B to be owned by C .
• release(x : A → B): Send B a dec message.

The problem with this approach is a race condition be-

tween inc and dec messages. In Fig. 2, actor C essentially

releases A’s reference instead of its own, because B didn’t

learn about C’s reference in time.

Several distributed reference counting approaches have

been developed to deal with this type of race condition [3,

10, 17], but they are inapplicable to our garbage detection

algorithm in Section 5.

4 Proactive Reference Tracking
Proactive reference tracking is an optimized form of refer-
ence listing – as used in [13, 15] – in which each reference

has a distinct identifier to prevent race conditions. This is

inspired by the representation of capabilities as an “unforge-

able authentication token” [7] together with a designated

owner and target address. We also assume these tokens are

globally unique and efficiently comparable. Thus, we let each

reference x : A → B represent a triple (x ,a : A,b : B), where
x is the token and a : A,b : B are the names of the owner

and target actors, respectively.

The authentication token serves to prevent the race con-

dition in Fig. 2, where actors may accidentally release one

another’s references. The basic idea, represented in Fig. 3, is:

1. If C is releasing z : C → B but B hasn’t learned about

the creation of z yet, then B records the fact that z has
been released locally. (Notice that a reference counting

approach could not, in general, determine whether z
has arrived at B yet.)

2. AlthoughA could try to inform B about z immediately,

we reason that C will not be garbage collected until

x : A → B has been released. Consequently, it is

sufficient to defer sending z up until the point when

x is released. In general, the purpose of a release

message will be both to release references and also to

inform the target about new ones.

3. Even after sending a release message, the release

protocol requires that actors do not forget about the

46

AGERE ’18, November 5, 2018, Boston, MA, USA Dan Plyukhin and Gul Agha

CA

B

rc = 1

rc = 1

inc()

msg(a : A)

(a) A sends C a reference to B.

CA

B

rc = 1

rc = 1

inc()

msg(a:A)

dec()

(b) C releases the reference immediately.

CA

B

rc = 1

rc = 0

inc()

msg(a:A)

(c) B receives dec() before inc() arrives.

Figure 2. Example of a race condition in naïve reference counting. Circles represent actors and “rc” is their corresponding

reference count. Solid arrows represent existing references, while dashed grey arrows represent sent messages.

CA

B

x : A → B
y : A → C
z : C → B

x : A → B

msg(z : C → B)

(a) A sends C a reference z : C → B.

CA

B

x : A → B
y : A → C
z : C → B

z : C → B

x : A → B

msg(a:A)

release(z)

(b) C releases the reference immediately.

CA

B

x : A → B
y : A → C
z : C → B

z : C → B

x : A → B
z : C → B released

msg(a:A)

ack(z)

(c) B will wait for A to tell it about z.

CA

B

x : A → B
y : A → C
z : C → B

x : A → B
z : C → B released

msg(a:A)

release(x ; z)

(d) A releases x and C may now forget z.

CA

B

x : A → B
y : A → C
z : C → B

msg(a:A)

ack(x ; z)

(e) B releases x and forgets z.

CA

B

y : A → C

msg(a:A)

(f) Amay now forget x and z.

Figure 3. Example of how proactive reference counting avoids race conditions. The annotations next to each actor indicate

(a subset of) the references they know about. Initially, A knows it has references x ,y to B,C respectively and also knows

about z : C → B after creating it. Next, C receives z and tries to release it, but will not forget z until it has received an

acknowledgment. When B learns that z has been released, it saves this fact until it learns about z from A. Finally, B learns

about z at the same time as it learns x has been released – at this point it has no more references and deletes itself.

references they create until they have received an ac-
knowledgment message ack_release. This makes the

Chain Lemma possible, which will be essential to the

garbage detection algorithm of Section 5.

We will only say that a reference x : A → B is released
once B has received the release message for x . Thus A
does not know whether x is released until it receives the

acknowledgment.

Points 2 and 3 lead to the following new requirements for

our RTS:

Requirement 2: The owner A of a reference x : A → B
is responsible for sending B every reference y : C → B it
creates while possessing x , and it must do so before all its own
references to B are released.
Requirement 3: Actor Amust keep track of every reference
x : C → B it creates until it sends x to B and receives an
acknowledgment to that message.

Listings 1 and 2 give expository pseudocode describing

our RTS from the perspective of actor A.
Each actor A has the following fields:

47

Concurrent Garbage Collection in the Actor Model AGERE ’18, November 5, 2018, Boston, MA, USA

Listing 1 User Interface

procedure Actor(b : B) ▷ Constructor
(a : A) = new ActorName()

(x : B → A) = new Reference()

add x to this.owners

return x
▷ Methods

procedure spawn()

(a : A) = this.name

(x : A → B) = new Actor(a : A)
add x to this.refs

return x

procedure create_ref(x : A → B,y : A → C)
(z : C → B) = new Reference()

add z to this.memory

return z

procedure receive(x : A → B)
add x to this.refs

procedure release(x : A → B)
remove x from this.refs

add x to this.deactivated_refs

if {y : A → B | y ∈ this.refs} = ∅ then
update_info(x .target)

• this.refs tracks the references possessed by A.
• this.deactivated_refs tracks references that A is plan-

ning to release.

• this.owners tracks unreleased references known to A.
• this.released_owners contains released references x :

B → A where the creator of x has not told A about x .
• this.memory tracks all the references x : C → B cre-

ated by A that have yet to be sent to B.

Listing 1 defines the RTS interface. Actor constructors

must be modified to return a reference instead of an actor

name and to store this reference locally. Reciprocally, spawn

shows how the creator must provide its actor name for the

creation of that reference and store it locally once received.

Each time A wishes to share a reference to B with some

C , it must create a new reference with make_ref(x : A →

B, y : A → C). Note that y is necessary both for specifying

the new owner of z and ensuring that the new reference

z : C → B can actually be sent to C .
Incoming messages containing a reference x must be han-

dled by first invoking receive(x), and then invoking re-

lease(x) when no longer needed. The latter will in turn call

update_info, triggering a release message to be sent to

the target when there are no references to the target left

in the local heap. This is only a suggestion; update_info

Listing 2 Release Protocol (without cycle detection)

procedure update_info(b : B)
(a : A) = this.name

releasing = {x : A → B | x ∈ this.deactivated_refs}

remove releasing from this.deactivated_refs

created = {x : C → B | x ∈ this.memory}

remove created from this.memory

n = this.seqnum++

this.on_ack[n] = releasing ∪ created
b ! release_recv(a : A, n, releasing, created)

procedure release_recv(a : A, n, releasing, created)
(b : B) = this.name

for x ∈ releasing do
if x ∈ this.owners then

remove x from this.owners

else
add x to this.released_owners

for x ∈ created do
if x ∈ this.released_owners then

remove x from this.released_owners

else
add x to this.owners

a ! ack_release(b : B,n)

procedure ack_release(b : B,n)
delete this.on_ack[n]

can be called as (in)frequently as desired, leading to a user-

controllable trade-off between reducing the size of this.memory
and reducing message congestion.

Listing 2 implements the release protocol. It begins with

a local method call to update_info with a target actor B.
This gathers deactivated and recently created references

and sends them asynchronously to B. To satisfy Require-

ment 3, the released references are stashed away locally

until the acknowledgment is received by moving them from

memory into on_ack[n]; the sequence number n is used to

disambiguate acknowledgments, as there may be multiple

concurrent release messages sent to the same target.

Upon receiving the release message, the target updates

its state to account for the new information and sends an

acknowledgment message. Once that has been received, the

releasing actor may finally forget the references it held and

created.

Let us say that A knows x : C → B (where C or B may be

equal toA) ifx is inA.refs, A.owners, A.memory, orA.on_ack[n]

48

AGERE ’18, November 5, 2018, Boston, MA, USA Dan Plyukhin and Gul Agha

for some n. The set of all such references is called A’s knowl-
edge set. If x is in A.refs or A.owners, then it is necessarily

unreleased; otherwise, it may or may not be.

Not every unreleased reference targeting B is in B’s knowl-
edge set. However, since actors keep track of the references

they create, the following lemma tells us that there is always

a “path” from B to all of its owners by following a sequence

of references:

Lemma 4.1. (Chain Lemma) If x : A → B is an unreleased
reference then there exists a finite, not necessarily unique, se-
quence of distinct actors A1, . . . ,An and references x1, . . . ,xn
such that A = An , x = xn , and:

B knows (x1 : A1 → B)

A1 knows (x1 : A1 → B) and (x2 : A2 → B)

. . .

An−1 knows (xn−1 : An−1 → B) and (xn : An → B)

An knows (xn : An → B)

Proof. Routine induction on the events of the system, show-

ing that each of the operations in Listings 1 and 2 preserves

this property. Notice that without Requirement 3, some Ai
triggering a release message to B would temporarily break

the chain. □

It follows that A.owners is empty if and only ifA has no in-

coming references and no undelivered messages from other

actors. AfterA learns that it is quiescent, it releases all its ref-

erences and may be destroyed once all the acknowledgments

return. Thus, the RTS is sound and leaves only temporary

“floating garbage” waiting to be reclaimed.

5 Garbage Collection
5.1 Reduction to Closed Set Detection
In this section we define closed sets of actors and show how

the problem of actor garbage collection can be reduced to

the detection of these closed sets. Crucial to our definitions

is the notion of connectedness: the reflexive, transitive, and
symmetric closure of the acquaintance relation. That is, A
is connected to B if and only if there exists an actor A′

such

that A′
is connected to B and either A can reach A′

or A′
can

reach A.
A setG of actors is strictly closed at time t if, for each actor

A ∈ G , every actor B connected toA is also inG . Equivalently,
Int (G) ⊆ G and Outt (G) ⊆ G, where:

Int (G) = {A | ∃B ∈ G, ∃x : A → B unreleased at time t}

Outt (G) = {A | ∃B ∈ G, ∃x : B → A unreleased at time t}

The closure of a collection of actors S is the smallest strictly

closed set containing S .
Because references to existing actors are unforgeable, it

follows that a strictly closed setG at time t can only evolve so
that at time t ′ > t , we have Int ′(G) ⊆ G∗

and Outt ′(G) ⊆ G∗

where G∗
is the closure of G under actor creation. At such a

future time t ′, the set G is said to be closed.

Let us now classify garbage in terms of connectedness.

From the definitions in Section 2, it follows that all garbage

falls in one of the three categories:

1. Actors disconnected from the live set;

2. Quiescent actors connected to the live set;

3. Potentially unblocked actors that become disconnected

from the live set after all quiescent actors are destroyed.

For an example of the latter, notice in Fig. 1 how actor 6

is live, but can neither reach nor be reached by the live set

because it is only connected via the quiescent actor 5.

Now the problem of sound and complete garbage collec-

tion can be reduced to detecting closed and quiescent sets:

TakeG to be the smallest closed set containing the root set at

time t . Then all actors outside of G and all quiescent actors

inside of G are garbage, and may be deleted. This causes

all garbage in the third category above to fall into the first

category, which will be caught in the next GC iteration.

5.2 Closed Set Detection
An actor’s snapshot at time t is the state of its knowledge set,
as defined in Section 4, at time t . We would like to say that

if a certain set of actor snapshots (all from distinct actors

at distinct times) “appears closed”, then the actors that took

those snapshots indeed form a closed set. We shall find, after

several modifications to the implementation in Listing 2, that

this is indeed possible.

Below, we define the notion of a closed set of snapshots at
time t , which we show in the next section corresponds to a

closed set of actors at t .

Closure rule: A set G of snapshots is closed if and only if

it is nonempty and the following holds: For each x : B → C
in A’s snapshot (where B or C may be the same as A), C ∈ G
and, unlessC’s snapshot indicates that x was released, B ∈ G
as well.

The intuition for this is straightforward: Any truly closed

set containing an actor B should include all its owners and

references. Since B does not know all its owners, we use

the memory of owners already in G and the chain rule to

determine the next owner to look for. If Ai knows about

xi+1 : Ai+1 → B but B knows, at the time of its snapshot, that

xi+1 is released, then B also knows about all the references

to it that were created using xi+1. This makes it unnecessary

to collect a snapshot from Ai+1 unless another actor in G
implicates it.

Notice that, from the definition, one can always determine

a nonempty collection of actors that need to be added to a

non-closed set in order to make it closed – this is in contrast

to a system where one can tell that a set is not closed, but not

whom to ask in order to make progress. Consequently, the

following two algorithms for closed set detection can always

49

Concurrent Garbage Collection in the Actor Model AGERE ’18, November 5, 2018, Boston, MA, USA

make progress, and terminate so long as they proceed more

quickly than actor creation.

Centralized approach: A designated actor requests a snap-

shot from each actor in the root set (in parallel). Based on

each response, the Closure rule allows it to determine which

actors (if any) should be queried next. This approach re-

quires approximately 2N messages in the absence of topol-

ogy changes, where N is the number of actors in the closure

of the root set.

Decentralized approach: The initial actor A takes a snap-

shot and asks all its references and known owners to send

their snapshots to A. Each actor, upon receiving the request,

in turn asks all its neighbors to send snapshots to A. This ap-
proach requires more messages for highly connected graphs,

but terminates more quickly.

5.3 Soundness
To ensure that a closed set of snapshots corresponds to a

closed set of actors, we must add two new rules with corre-

sponding changes to the release protocol shown in Listing 3.

The first rule prevents an actor’s owners from forgetting

the references they create before taking a snapshot. This

prevents chains from being “broken” by references getting

released during closed set detection.

Invalidation rule: If A is releasing its references to B and

learns that B is taking a snapshot, then Amust take a snap-

shot before forgetting its references to B.

To satisfy this rule, we add a new field this.seqnum in List-

ing 3. This field, initially 0, is incremented each time an actor

responds to a snapshot request (of which there is only one

for each GC pass). Thus, knowledge about whether B has

taken a snapshot is obtained by piggybacking B.seqnum in

the ack_releasemessage: IfA has not yet received the latest

snapshot request, then A.seqnum will be less than B.seqnum.

WhenA detects this in ack_release, it will cache its current

snapshot to be subsequently relayed to the garbage collect-

ing actor.

The next rule, essentially dual to Requirement 3, prevents

an actor from sending new references to those that have

already taken a snapshot and subsequently forgetting those

same references before itself taking a snapshot. Thus refer-

ences can no longer “slip through the cracks” of the closed

set detection phase. Knowledge about whether B took a snap-

shot is obtained the same way as in the Invalidation rule.

Requirement 4: ActorAmust keep track of every reference

x : B → C it creates until it knows that B is not taking a

snapshot.

Requirements 3 and 4 combine to mean that a reference

x : B → C created by A cannot be forgotten until it has

received acknowledgments from both B and C . This need
not mean that either of the targets were in fact released,

since an acknowledgment could be triggered by invoking

the update_info method with an empty releasing set.

Listing 3 Release Protocol (with cycle detection)

procedure update_info(b : B)
(a : A) = this.name

releasing = {x : A → B | x ∈ this.deactivated_refs}

remove releasing from this.deactivated_refs

created = {x : C → B |

x ∈ this.memory, ¬ x .target_releasing}
sent = {x : B → C |

x ∈ this.memory, ¬ x .owner_releasing}
for all x ∈ created do x .target_releasing = True

for all x ∈ sent do x .owner_releasing = True

n = this.seqnum++

this.on_ack[n] = releasing ∪ created ∪ sent
b ! release_recv(a : A, n, releasing, created)

procedure release_recv(a : A, n, theirRefs, createdRefs)
. . .
a ! ack_release(b : B,n, this.latest_snapshot)

procedure ack_release(b : B,n, snap_id)
for all (x : C → B) ∈ this.on_ack[n], whereC , A do

if x .owner_ack then
remove x from this.memory

else
x .target_ack = True

for all (x : B → C) ∈ this.on_ack[n] do
if x .target_ack then

remove x from this.memory

else
x .owner_ack = True

if this.latest_snapshot < snap_id then
this.snapshots[snap_id] = snapshot()

this.latest_snapshot = snap_id
delete this.on_ack[n]

The principal challenge of closed set detection is to ensure

that after an actor takes a snapshot, all subsequent references

it receives are also to be in the closure. That is, it must be

the case that ∀t > tB , Outt (B) ⊆ G∗
, where tB is the time of

B’s snapshot. The main idea of our soundness proof is the

observation that the outgoing references of actors can be

controlled by knowing about their incoming references, as

formalized in the following key lemma.

(The following arguments make reference to a global time,
by which we mean any total ordering of events compatible

with the usual causation relation.)

50

AGERE ’18, November 5, 2018, Boston, MA, USA Dan Plyukhin and Gul Agha

Lemma 5.1. LetGt ⊆ G be the set of actors that already took
their snapshots before time t .
If Int (Gt) ⊆ G∗ then Outt (Gt) ⊆ G∗.

Proof. We prove this by induction on events ordered by

global time, starting from the the first snapshot of any actor

in G.
If at time t some actor B is taking a snapshot, then the

closure rule guarantees Int ({B}),Outt ({B}) ⊆ G. This also
holds for every other actor inGt , by the induction hypothe-

sis.

If at time t , actor B ∈ G spawned a new actor B′
(and

now B′ ∈ Outt ({B})), then by definition B′
is in the creation

closure G∗
.

Suppose now that at time t , actor B ∈ Gt receives x : B →

C from some A, where by hypothesis A ∈ Int ({B}) ⊆ G∗
.

IfA ∈ G\Gt – that is, it has not yet taken a snapshot – then

Requirement 4 guarantees that C will remember x : B → C
when it does take one.

Otherwise, A ∈ Gt . Then at the time ts that x was sent,

C ∈ Outts ({A}). (At time t this is no longer guaranteed to be
true, as Amay have released C .)

1. If ts was after A took a snapshot, then C ∈ G∗
by the

induction hypothsis.

2. Otherwise, C must have been in A’s memory at the

time of its snapshot by Requirement 4, because at time

t the source A still has a reference to B.

□

We may now prove the first half of soundness:

Lemma 5.2. LetG be a closed set of snapshots at timeT . Then
∀T ′ > T , InT ′(G) ⊆ G∗.

Proof. The proof is by induction on events ordered by global

time, starting from the first snapshot of any actor in G. We

show for each time t that Int (Gt) ⊆ G∗
.

Suppose at time t = tB that B ∈ G takes a snapshot.

Then IntB ({B}) ⊆ G follows from the closure rule, the chain

lemma, and the invalidation rule.

Consider now the case where at time t a referencey : C →

B is created by actor A, where B ∈ Gt and by hypothesis

A ∈ Int ({B}) ⊆ G∗
. If A has not yet taken a snapshot, then

Requirement 4 ensures thatC ∈ G . Otherwise, it follows from
Lemma 5.1 that Outt ({A}) ⊆ G∗

and therefore C ∈ G∗
. □

Theorem 5.3. (Soundness) If G is a closed set of snapshots
at time T , then the actors of G form a closed set.

Proof. It suffices to show that InT (G) ⊆ G∗
and OutT (G) ⊆

G∗
. The first fact was proved in Lemma 5.2. The second then

follows from Lemma 5.1, since GT = G. □

5.4 Quiescence Detection
Even if a closed set contains part of the root set, it may still

contain garbage in the form of quiescent actors, as defined

in Section 2. Fortunately, such subsets can be detected by

storing the number of messages sent using x : A → B and

comparing it with the number processed by B. Such a count

is also used to deal with unordered messages in Section 6.1.

Let G be a closed set of snapshots and Q ⊆ G a set of

snapshots which does intersect the root set and where A ∈

Q implies every owner of A in G is also in Q . We argue

by informal induction that if all the send/receive counts of

snapshots in Q are in agreement, then the actors of Q are

quiescent garbage.

Let A be the first actor in Q to have taken a snapshot, at

time tA. It must be blocked because all its owners are in Q ,
their snapshots come after tA, and their message send counts

are no higher than the receive counts ofA. Consequently,A is

only potentially unblocked if one of its owners is potentially

unblocked.

For the next actor B we can make the same argument and

observe:

• A could only send a message to B if one of A’s owners
became unblocked after tA.

• B did not send any new messages to A during the

interval (tA, tB).

Therefore B is only potentially unblocked if an owner of A
or B in Q \ {A,B} is potentially unblocked.

We may continue this way for each of the actors in Q
and conclude that none of them are potentially unblocked.

Consequently, the set is quiescent (and in fact it has been so

since tA).

6 Discussion
6.1 Unordered Messages
The algorithms above assume FIFO message ordering for

simplicity and becausemost modern actor systems guarantee

it. However, we can easily extend the algorithm to support

unordered messaging, as in the theoretical Actor Model [2]

and the SALSA language [15].

We can do this by attaching to each application-level mes-

sage the token used to send that message. The sender counts

the number of messages sent using that token, as does the

receiver; note that the receiver need not know about the

token beforehand. When the sender releases its references,

it attaches the number of messages sent using those tokens.

The target then delays processing the release message until

it has received the expected number of messages.

6.2 Capabilities
Our treatment of reference tracking in Section 3 is richer

than previous approaches like [11] because we assume that

a reference can only be used by its designated owner. It is for

this reason that actors cannot simply duplicate a reference
as usual, and need to explicitly specify the recipient. While

this restriction makes our definition slightly less flexible –

and incompatible with existing RTS APIs – it is essential to

51

Concurrent Garbage Collection in the Actor Model AGERE ’18, November 5, 2018, Boston, MA, USA

proactive reference tracking, and we believe it captures the

intended use case.

Our definition comes from the observation that references

can be thought of as a kind of capability [7, 9]: A combination

of an actor name (called the designation) with some promise

that messages sent will be delivered (called the authority to

access the target). Capabilities, like references, can only be

created by those already in possession of them – initially

just the target actor and its creator – and are usually only

meant to be used by a specific actor. It therefore makes sense

for the act of capability creation, often called delegation, to
specify who that new owner is at the moment of creation.

In Section 4, this information was used to trace who gave
authority to whom and to create the “chains” of delegation

formalized in the Chain Lemma.

6.3 Passive Objects
Although our model assumes no shared state, it is common

in practice for actors colocated on the same node to pass data

structures by reference instead of by copying. This leads to

at least two complications:

1. What if actor names are stored in the data structure?

2. When can shared passive data be reclaimed?

The soundness of our garbage detection scheme is contin-

gent on using references to communicate instead of actor

names. Since distinct owners cannot share the same refer-

ence and references cannot be used after being released, any

data structure containing references must provide a means

for producing new references the same way actors do. For

passive objects protected by a monitor, the simplest solution

is to treat them as a kind of actor and endow them with the

same methods and fields as Listings 1 and 3. On the other

hand, lock-free data structures would require greater care to

ensure compatibility with actor GC.

The second problem is somewhat of a non-issue, since

passive garbage could presumably be collected normally

(i.e. by sequential GC) when all the actors with references

to it have themselves been destroyed. One must take care,

however, to release all references stored in the data structure

when this occurs.

7 Related Work
7.1 Garbage Collection of Actors
Tracing garbage collectors for sequential languages cannot

be directly applied to actor systems because objects deter-

mined “unreachable” by the former may not be garbage at all.

In a multicore setting this issue can be worked around by spe-

cially designing the runtime using “stages”, as in SALSA Lite

[6]. Another clever approach is to transform the actor graph

in such a way that garbage actors coincide with garbage

objects [14, 16]. However, doing so requires maintaining ex-

pensive inverse acquaintance references, so no practical GC

employs this method.

Even though the Pony language targets multiprocessors,

its designers took a different approach to the above due

to concerns about cache coherency and synchronization

[5]. Our intent in the present work has been to adapt their

garbage collection scheme, MAC, to a distributed setting

by removing the dependency on causal message ordering.

Whereas proactive reference tracking methods are more ex-

pensive than the weighted reference counting used by MAC,

this cost might be offset (even on a multiprocessor) by the re-

duced number of control messages and snapshots sent to the

cycle detector. Our cycle detection scheme is fundamentally

different than theirs, as is our definition of actor garbage (see

Section 2).

To the best of our knowledge, the only complete and fault-

tolerant distributed actor GC implemented is that of SALSA

1.0 [15]. Unfortunately the protocol introduces a very high

message overhead for the maintenance of reference listing

and for compatibility with the quiescence-based garbage

collector, which needs to monitor actors for mutation. The

overhead of our GC is significantly lower because proactive

reference tracking uses the Chain Lemma to achieve the

guarantees of reference listing, and because our garbage

detection scheme is reduced to snapshot collection.

7.2 Distributed Reference Tracking
The contributions of this paper aremade possible by the good

properties of a new distributed reference tracking scheme

we call proactive reference tracking, inspired by the novel

reference counting technique introduced by Lee in a shared

memory context [8]. We briefly survey previous approaches

to distributed referencing below.

The naïve extension of reference counting to actors re-

quires causal message delivery to ensure that increment mes-

sages are received in time. The weighted reference counting
(WRC) optimization, introduced in [3, 17] can be used (as

in [5]) to reduce the number of control messages. In fact

WRC can be used to remove the causal restriction entirely,

but would require the creation of indirection cells through

which messages need to be routed.

Our scheme is superficially similar but essentially inverse

to the indirect reference counting [10] and stub-scion pair
chain (SSP) [13] approaches. Both remove the causal order-

ing requirement by having references contain pointers back

to the actor that created them, producing an inverted diffu-
sion tree. In these approaches the creator of the reference is

responsible for its release, rather than the reference’s target.

Our approach essentially uses (non-inverted) diffusion

trees, where actors keep track of what references they create

and to whom they are sent.

8 Future Work
We plan to implement the present work and evaluate its

performance on distributed and multicore systems. In order

52

AGERE ’18, November 5, 2018, Boston, MA, USA Dan Plyukhin and Gul Agha

to make it applicable to general-purpose applications, the

message and memory overhead must be kept low. The data

structures used to implement memory and the frequency of

update_info invocations may depend on an actor’s behav-

ior, so this should be evaluated across a variety of different

benchmarks.

Unfortunately, it is not possible to add our GC to an exist-

ing codebase without modifying any methods: Unlike actor

names, references cannot be freely passed around. Creating

a new reference requires passing both the target and owner

actor names to its constructor, and all references received in

messages must have receive_ref invoked upon them. (How-

ever, release(x) could be triggered automatically when x
is determined to be garbage by ordinary actor-local GC.)

Tools and languages that perform these labors automatically

would significantly improve the usability of our GC.

Finally, the fault-tolerance and fault-recovery properties

of our algorithm warrant study in their own right, as a dis-

tributed system should have the capacity to detect garbage

despite hardware failure and message loss.

Acknowledgments
This material is based on work supported in part by the

National Science Foundation under grant NSF CCF 16-17401.

We are indebted to the anonymous referees for providing

excellent feedback on the original version of this paper.

References
[1] Gul Agha, Ian A. Mason, Scott F. Smith, and Carolyn L. Talcott. 1997.

A Foundation for Actor Computation. J. Funct. Program. 7, 1 (1997),
1–72. http://journals.cambridge.org/action/displayAbstract?aid=44065

[2] Gul A. Agha. 1990. ACTORS - a model of concurrent computation in
distributed systems. MIT Press.

[3] David I Bevan. 1987. Distributed garbage collection using reference

counting. In International Conference on Parallel Architectures and
Languages Europe. Springer, 176–187.

[4] Sebastian Blessing, Sylvan Clebsch, and Sophia Drossopoulou. 2017.

Tree topologies for causal message delivery. In Proceedings of the 7th
ACM SIGPLAN International Workshop on Programming Based on Ac-
tors, Agents, and Decentralized Control, AGERE 2017, Vancouver, BC,
Canada, October 23 - 27, 2017. 1–10. https://doi.org/10.1145/3141834.
3141835

[5] Sylvan Clebsch and Sophia Drossopoulou. 2013. Fully concurrent

garbage collection of actors on many-core machines. In Proceedings
of the 2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA 2013, part
of SPLASH 2013, Indianapolis, IN, USA, October 26-31, 2013. 553–570.
https://doi.org/10.1145/2509136.2509557

[6] Travis J. Desell and Carlos A. Varela. 2014. SALSA Lite: A Hash-Based

Actor Runtime for Efficient Local Concurrency. In Concurrent Objects
and Beyond - Papers dedicated to Akinori Yonezawa on the Occasion of
His 65th Birthday. 144–166. https://doi.org/10.1007/978-3-662-44471-9_
7

[7] Sophia Drossopoulou and James Noble. 2014. How to Break the Bank:

Semantics of Capability Policies. In Integrated Formal Methods - 11th
International Conference, IFM 2014, Bertinoro, Italy, September 9-11, 2014,
Proceedings. 18–35. https://doi.org/10.1007/978-3-319-10181-1_2

[8] Hyonho Lee. 2010. Fast Local-Spin Abortable Mutual Exclusion with

Bounded Space. In Principles of Distributed Systems - 14th Interna-
tional Conference, OPODIS 2010, Tozeur, Tunisia, December 14-17, 2010.
Proceedings. 364–379. https://doi.org/10.1007/978-3-642-17653-1_27

[9] Mark S Miller, Ka-Ping Yee, Jonathan Shapiro, et al. 2003. Capabil-
ity myths demolished. Technical Report. Technical Report SRL2003-
02, Johns Hopkins University Systems Research Laboratory, 2003.

http://www. erights. org/elib/capability/duals.

[10] José M. Piquer. 1991. Indirect Reference Counting: A Distributed

Garbage Collection Algorithm. In PARLE ’91: Parallel Architectures
and Languages Europe, Volume I: Parallel Architectures and Algorithms,
Eindhoven, The Netherlands, June 10-13, 1991, Proceedings. 150–165.
https://doi.org/10.1007/BFb0035102

[11] David Plainfossé and Marc Shapiro. 1995. A Survey of Distributed

Garbage Collection Techniques. InMemory Management, International
Workshop IWMM 95, Kinross, UK, September 27-29, 1995, Proceedings.
211–249. https://doi.org/10.1007/3-540-60368-9_26

[12] André Schiper, Jorge Eggli, and Alain Sandoz. 1989. A New Algorithm

to Implement Causal Ordering. In Distributed Algorithms, 3rd Inter-
national Workshop, Nice, France, September 26-28, 1989, Proceedings.
219–232. https://doi.org/10.1007/3-540-51687-5_45

[13] Marc Shapiro, Peter Dickman, and David Plainfossé. 1992. SSP chains:
Robust, distributed references supporting acyclic garbage collection. Ph.D.
Dissertation. inria.

[14] Abhay Vardhan and Gul Agha. 2002. Using passive object garbage

collection algorithms for garbage collection of active objects. In Pro-
ceedings of The Workshop on Memory Systems Performance (MSP 2002),
June 16, 2002 and The International Symposium on Memory Man-
agement (ISMM 2002), June 20-21, 2002, Berlin, Germany. 213–220.
https://doi.org/10.1145/773039.512443

[15] Wei-Jen Wang and Carlos A. Varela. 2006. Distributed Garbage Col-

lection for Mobile Actor Systems: The Pseudo Root Approach. In

Advances in Grid and Pervasive Computing, First International Confer-
ence, GPC 2006, Taichung, Taiwan, May 3-5, 2006, Proceedings. 360–372.
https://doi.org/10.1007/11745693_36

[16] Wei-Jen Wang, Carlos A. Varela, Fu-Hau Hsu, and Cheng-Hsien

Tang. 2010. Actor Garbage Collection Using Vertex-Preserving Actor-

to-Object Graph Transformations. In Advances in Grid and Perva-
sive Computing, 5th International Conference, GPC 2010, Hualien, Tai-
wan, May 10-13, 2010. Proceedings. 244–255. https://doi.org/10.1007/
978-3-642-13067-0_28

[17] Paul Watson and Ian Watson. 1987. An Efficient Garbage Collec-

tion Scheme for Parallel Computer Architectures. In PARLE, Parallel
Architectures and Languages Europe, Volume II: Parallel Languages,
Eindhoven, The Netherlands, June 15-19, 1987, Proceedings. 432–443.
https://doi.org/10.1007/3-540-17945-3_25

53

http://journals.cambridge.org/action/displayAbstract?aid=44065
https://doi.org/10.1145/3141834.3141835
https://doi.org/10.1145/3141834.3141835
https://doi.org/10.1145/2509136.2509557
https://doi.org/10.1007/978-3-662-44471-9_7
https://doi.org/10.1007/978-3-662-44471-9_7
https://doi.org/10.1007/978-3-319-10181-1_2
https://doi.org/10.1007/978-3-642-17653-1_27
https://doi.org/10.1007/BFb0035102
https://doi.org/10.1007/3-540-60368-9_26
https://doi.org/10.1007/3-540-51687-5_45
https://doi.org/10.1145/773039.512443
https://doi.org/10.1007/11745693_36
https://doi.org/10.1007/978-3-642-13067-0_28
https://doi.org/10.1007/978-3-642-13067-0_28
https://doi.org/10.1007/3-540-17945-3_25

	Abstract
	1 Introduction
	2 Model
	3 References
	4 Proactive Reference Tracking
	5 Garbage Collection
	5.1 Reduction to Closed Set Detection
	5.2 Closed Set Detection
	5.3 Soundness
	5.4 Quiescence Detection

	6 Discussion
	6.1 Unordered Messages
	6.2 Capabilities
	6.3 Passive Objects

	7 Related Work
	7.1 Garbage Collection of Actors
	7.2 Distributed Reference Tracking

	8 Future Work
	Acknowledgments
	References

